Versaring.

170124 K7

April 8, 1998

#### Trustees of the Enviro-Chem Trust Fund:

R.O. Ball, Ph.D., P.E.

Environ

750 West Lake Cook Road

Suite 420

Buffalo Grove, IL 60089

(847) 520-1155

John M. Kyle, III, Esq. Barnes & Thornburg

1313 Merchants Bank Bldg.

11 South Meridian Street Indianapolis, IN 46204

(317) 231-7284

Norman W. Bernstein, Esq. N.W. Bernstein & Associates

2000 M Street, N.W.

Suite 745

Washington, D.C. 20036

(202) 466-8100

Sent Via Federal Express

Re: Revised Remedial Action (RRA) at the Enviro-Chem Site, Zionsville, Indiana

Final Geotechnical Survey Report on the Southern Concrete Pad Area

Dear Trustees:

Enclosed is the final Geotechnical Survey Report on the Southern Concrete Pad area. Please note that the geotechnical data from the supplemental hot spot survey have been integrated into the report and are also summarized in Appendix E of the report.

Should you have any questions or require further clarification on this report, please call me at (215)788-7844 extension 222.

Very truly yours,

G.J. Anastos, Ph.D., P.E.

Project Manager

enclosure

cc: J Borucki (Vesrar)

L Holish (Versar)

M Dowiak (Radian)

R Hutchens (ENVIRON)

V Epps (IDEM)

R Lukas (GEC)

C Gaffney (Versar)

M McAteer (USEPA)

T Harrison (CH2M Hill) 2 copies

C:\DOCS\ENVIROCH\FGEOTECH

Geotechnical Report for the Southern Concrete Pad Area Enviro-Chem Site Zionsville, Indiana

**April 8, 1998** 

This document has been prepared in accordance with accepted scientific and engineering practices and procedures and Versar, Inc.'s Quality Assurance Program.



# TABLE OF CONTENTS

| 1.0 INTRO   | DUCTI          | ON                                                                   |
|-------------|----------------|----------------------------------------------------------------------|
| 2.0 SUBSUI  | RFACE          | INVESTIGATION AND LABORATORY TESTING 3 -                             |
| 2.1         | 2.1.1<br>2.1.2 | Subsurface Investigation                                             |
| 2.2         | 2.1.2          | Preliminary Hot Spot Report                                          |
| 2.3         |                | Field and Laboratory Soil Testing 5 -                                |
| 3.0 SITE CO | ONDITI         | ONS 6 -                                                              |
| 3.1<br>3.2  |                | Soil Conditions                                                      |
| 4.0 ANALY   | SIS AN         | D RECOMMENDATIONS 10 -                                               |
| 4.1         |                | Sheet Piling 11 -                                                    |
| 4.2         |                | Temporary Shoring 12 -                                               |
| 4.3         |                | Stability of Excavation Slopes                                       |
| 4.4         |                | Dewatering                                                           |
| 5.0 QUALII  | FICATI         | ONS 17 -                                                             |
|             |                | APPENDICES                                                           |
| Appendix A  | <b>L</b>       |                                                                      |
| Figu        | re 1 - Bo      | ring Location Plan                                                   |
| _           |                | il Cross Section A - A' - E725,950                                   |
| _           |                | il Cross Section B - B' - E725,900                                   |
| _           |                | il Cross Section C - C' - N921,645                                   |
| •           |                | il Cross Section D - D' - N921,670                                   |
| _           | •              | drogeologic Schematic                                                |
|             |                | cavation Boundary                                                    |
| •           |                | lope Stability Analysis in Cohesive Soil, Undrained Conditions (Ø=0) |

## Appendix B

Boring Logs Well Logs

## Appendix C

Summary of Shallow Soil Test Data Tables Laboratory Testing Sheets

## Appendix D

Dewatering Pumping Rate Estimates by Radian

## Appendix E

Preliminary Hot Spot Report

#### 1.0 INTRODUCTION

This report presents the results of the subsurface geotechnical exploration, laboratory testing and geotechnical evaluations for the Enviro-Chem Superfund site (performed during the period 26 January 1998 to 20 February 1998). In addition, supplemental geohydrological data from the Preliminary Hot Spot Report dated 26 March 1998 have been incorporated. <sup>1</sup>

The Enviro-Chem site is located in Boone County, approximately 10 miles northwest of Indianapolis, on U.S. Highway 421 in Zionsville, Indiana. The site lies to the west of the North Side Sanitary Landfill, a closed solid waste disposal facility which is also a Superfund Site. The Enviro-Chem Site is bounded on the south, east, and north by property owned by members of the Bankert Family, and on the west by a Bankert-controlled corporation, Boone County Resource Recovery Systems, Inc. An unnamed ditch separates the Enviro-Chem Site and North Side Sanitary Landfill along Enviro-Chem's eastern boundary.

As outlined in the Technical Design Report and Technical Specifications prepared by Radian, this report has been prepared by an Indiana-registered professional engineer that specializes in geotechnical engineering. The report provides the specified written documentation for review and concurrence by the USEPA and IDEM concerning the following items:

- confirmation of the preliminary excavation stability analysis,
- evaluation of the need for the proposed sheet pile cutoff wall, and
- information needed to determine the maximum safe depth of excavation in the Southern Concrete Pad Area.

The purpose of the subsurface exploration was to determine the extent and the nature of the principle soil strata, to determine the depth to groundwater, and to obtain samples of the various soils for identification of engineering soil properties. The thickness and horizontal extent of the various soils encountered, the zone of saturation, consistency, and assessment of shear strengths are shown on the appended boring logs and soil cross sections.

<sup>&</sup>lt;sup>1</sup> The purpose of the Preliminary Hot Spot Report was to further investigate concentrated organics identified in borings G-17 and G-18 during the Geotechnical Survey of the Southern Concrete Pad Area.



## Enviro-Chem RRA Geotechnical Report for Southern Concrete Pad Area Page 2 of 17

The subsurface exploration for the Geotechnical Survey of the Southern concrete pad area consisted of 18 soil borings (two of the borings were converted into piezometers for a pump test) and one pump well drilled and sampled to depths ranging from 24 to 36 feet below the existing ground surface. Boring locations and depths were specified by Versar. Boring locations are provided on Figure 1 - Boring Location Plan (Appendix A). Supplemental geohydrological data from the Preliminary Hot Spot Report consisted of five borings ranging in depth from 20 to 39 feet below the existing ground surface (boring locations are supplied on Figure 1 of Appendix E).

The following sections of this report describe the subsurface investigation, laboratory testing, current site conditions, and geotechnical engineering analysis.



#### 2.0 SUBSURFACE INVESTIGATION AND LABORATORY TESTING

#### 2.1 Subsurface Investigation

#### 2.1.1 Geotechnical Survey of the Southern Concrete Pad Area

The subsurface exploration was conducted between January 26, 1998 and February 20, 1998 and consisted of the installation of 19 soil borings, two piezometers, and one pumping well; sampling of representative soil strata; and laboratory testing to define geotechnical design criteria. The borings were advanced to depths ranging from 24 to 36 feet below the existing ground surface.

Drilling services were provided to Versar by Philip Environmental Services of Columbia, Illinois. A Central Mine Equipment CME-75 truck-mounted, drill rig was used to access and drill the soil borings. Soil borings were "double cased" (to minimize the potential for carrying contaminated soil to lower depths) by advancing the boring using 12-inch hollow stem augers with a center plug to a depth of 6 feet. At six feet, a 12-inch, steel casing was installed and grouted in place. After allowing the grout to harden for a period of 24 hours, the borings were advanced using 4¼-inch hollow stem augers with a center plug to the boring termination depth. The center plug was removed to allow for collection of soil samples though the augers.

Soil samples were collected according to ASTM D1586, "Standard Penetration Test and Split Barrel Sampling of Soils" and ASTM D1587, "Standard Test Method for Thin Walled Tube Sampling of Soils." Samples were collected continuously, in two-foot increments, from the ground surface through the termination depth of each boring.

Upon completion, the borings were tremie grouted with a cement-bentonite grout. The grout mix consisted of 94 pounds of cement to five pounds bentonite powder and seven gallons of water.

Borings G-2-98 and G-6-98 were installed with two-inch diameter piezometers, while G-19-98 was installed with a six-inch pump test well. The piezometers and pumping well were constructed with polyvinyl chloride (PVC) well material. Piezometer screens were constructed with a 0.010-inch continuous wrap screen with a nine-foot six-inch screened opening between depths of 8½ and 18 feet and 16½ and 26 feet, respectively. The pumping well was constructed with a six-inch diameter by ten-foot long continuous wrap screen. Well logs detailing the remaining well construction are provided in Appendix B.

After completion of the borings and wells, an Indiana-registered land surveyor located the borings and wells according to USGS state plain coordinates and elevations. Boring coordinates and elevations are provided on the attached boring logs.



#### 2.1.2 Preliminary Hot Spot Report

The supplemental survey in the vicinity of G-17 and G-18 was conducted between 9 March 1998 and 17 March 1998. It consisted of the installation of five borings, two of which were converted into injection/extraction wells. The borings were advanced to depths ranging from 20 to 39 feet below the ground surface, (see Figure 1 in Appendix E for locations of the borings).

Drilling services were provided to Versar by Top Flight, Inc of Gary, Indiana. A truck-mounted hollow stem auger, drill rig was used to access and drill the soil borings. Soil borings were "double cased" (to minimize the potential for carrying contaminated soil to lower depths) by advancing the boring using 12-inch diameter hollow stem augers with a center plug to a depth of 6 feet. At six feet, a 12-inch steel casing was installed and grouted in place. After allowing the grout to harden for a period of 24 hours, the borings were advanced using 4½-inch hollow stem augers with a center plug to the boring termination depth. The center plug was removed to allow for collection of soil samples though the augers.

Borings IW-1 and IW-4 were converted to four-inch diameter injection/extraction wells with screening starting at 11 and 17 feet below ground surface, respectively. The injection/extraction wells were constructed with four-inch diameter, 0.020 slot PVC screening. Logs detailing field observations and well construction are provided in Appendix E.

All borings not converted to injection/extraction wells were cement grouted to the surface.

#### 2.2 Engineering Oversight

The exploration was directed in the field by Versar. Versar's field representative documented the exploration activities and directed the driller as to the drilling sequence for the borings, confirmed the drilling and sampling procedures were performed as specified in the Pre-Construction Test Drilling Plan, and determined the final depth of each boring based on soil consistency.

Versar also inspected, logged and classified each soil sample. Field logs used to document the condition encountered in each boring included a description of the soil conditions, including standard penetration tests results (N, blows per foot (bpf)), penetration resistance test results ( $Q_p$ , tons per square foot (tsf)), unconfined compressive strength ( $Q_u$ , tsf), and head space screening results (PID, parts per million (ppm)). Final boring logs contained in Appendix B were prepared by a geotechnical engineer after examining the soil samples, reviewing the field boring logs, and evaluating laboratory test data.



#### 2.3 Field and Laboratory Soil Testing

Visual descriptions of soil samples collected for the Geotechnical Survey for the Southern Concrete Pad Area were made in the field and verified in the laboratory by an experienced geotechnical engineer. Soil samples from each stratum identified were selected for laboratory testing to characterize the physical properties of the subsurface soils. The field and laboratory testing program was developed by Versar with laboratory testing performed by Wang Engineering. The testing program consisted of the following field and laboratory test procedures:

#### **Field-Testing Procedures:**

- Standard Classification of Soil for Engineering Purposes (Unified Soil Classification System) (ASTM D2487),
- Unconfined Compressive Strength using a Hand Penetrometer (Q<sub>u</sub>, tsf), and
- Unconfined Compressive Strength using a Rimac Compression Apparatus (Q<sub>u</sub>, tsf).

#### **Laboratory Testing Procedures:**

- Natural Moisture Content Determination (%w) (ASTM D2216),
- Laboratory Density Determination (ρ, lb/ft³),
- Specific Gravity (G<sub>s</sub>, unitless) (ASTM D584),
- Unconfined Compressive Strength (Q<sub>u</sub>, tsf) (ASTM D2166),
- Particle Size Analysis (ASTM D421, D422, D2217 and D1140),
- Atterberg Limits (Liquid Limit, LL, Plasticity Index, PI) (ASTM D4318)

Laboratory testing results are presented on the final soil boring logs and in Appendix B. A brief description of the Unified Soil Classification System is included with the soil boring logs. Soil samples will be returned to the site after completion of the laboratory testing program.



#### 3.0 SITE CONDITIONS

The Enviro-Chem site is located approximately 10 miles northwest of Indianapolis, on U.S. Highway 421 in rural area near Zionsville, Indiana. The site lies to the west of the Northside Sanitary Landfill, a closed solid waste disposal facility which is also a Superfund Site. The Enviro-Chem Site is bounded by vacant properties to the north and south and to the west by Boone County Resource Recovery Systems, Inc. (scrap facility).

An unnamed ditch separates the Enviro-Chem Site and Northside Sanitary Landfill along Enviro-Chem's eastern boundary. The ditch enters a small pond located approximately 200 feet south of the southern Remedial Boundary. Surface water elevations of the unnamed ditch and pond were recorded during our investigation at 877.8 and 875.1 feet, respectively.

The Enviro-Chem site is relatively flat with 10 feet of elevation relief measured from the northern SVE Treatment Area to the southern remedial boundary of Southern Concrete Pad Excavation Area. The investigation was performed in the Southern Concrete Pad Excavation Area, where the elevation of the building floor slab ranged from 882.7 feet at the southeast corner of the slab to 885.6 feet at the northwest corner. Natural grades surrounding the site are typically level to gently rolling. The Northside Sanitary Landfill is the only significant grade change with an elevation greater than the Enviro-Chem Site.

#### 3.1 Soil Conditions

Our interpretation of the site stratigraphy and variation of the soil conditions encountered at the boring sites are presented on soil cross-sections in Appendix A and on the final boring logs in Appendix B. Figure 2 in Appendix E is the cross-section from the Preliminary Hot Spot Survey. The strata contact lines shown on the cross-sections (See Figures 2, 3, 4, and 5) and boring logs represent approximate boundaries between soil types. Actual transitions between soil types are gradual in both the horizontal and vertical directions.

Regional geologic conditions consist of a relatively thick sequence of glacial deposits overlying limestone bedrock. The unconsolidated deposits in the site vicinity are in excess of 150 feet thick and consist of predominately glacial till sequences separated by discontinuous thin to moderately thick sand and gravel outwash deposits.

Borings at the Southern Concrete Pad were advanced though an unreinforced concrete pad and underlying crushed stone subbase. Concrete thickness ranged from 7 to 13 inches. At time of our exploration, the southern half the Southern Concrete Pad was underwater/flooded. The subbase was saturated.

Wer Saling

#### Enviro-Chem RRA Geotechnical Report for Southern Concrete Pad Area Page 7 of 17

Below the crushed stone subbase and in borings located off the Southern Concrete Pad, a lean clay to sandy lean clay fill layer was encountered. Because the Southern Concrete Pad was flooded at the time of our exploration, the clay fill was saturated and typically had low shear strength. The fill was relatively free of construction debris and other deleterious material that may affect placement in the SVE Treatment Area.

Below the surficial soils, the borings encountered glacial till deposits consisting of sandy lean clay, lean clay with sand, sandy silty clay and lean clays with occasional thin, saturated sand lenses (thickness usually less than four inches). The weathered till deposit was brown grading to gray at depth of approximately 10 feet. The unsaturated clay till has moisture content that ranges from 9 to 12 percent and unconfined compressive strength of one to four tons per square foot (tsf). Where the clayey soil is coincident with the elevation of the Unnamed Creek or a saturated finite discontinuous sand layer, the moisture content approached and may have exceeded 20 percent, with a compressive strength as low as 0.5 tsf.

Beneath the upper clayey till, the borings encountered a glacial outwash or alluvial deposit consisting of loose to medium dense, medium to coarse grained, saturated, gray sand. The depth of the sand layer was reported to range from eight feet in the northeast corner of the pad to 22 feet in other areas. In some borings, the sand was encountered through the boring termination depth, while in other areas, the sand was underlain by very stiff to hard, gray lean clay with sand or sandy lean clay till. The deep clay till had unsaturated moisture contents between 9 and 12 percent and unconfined compressive strength that ranged from two to ten tsf. Where found, the clay till was encountered through the termination depth of the borings.

It should be noted that the geological conditions encountered during the hot spot evaluation were similar to those conditions encountered during the geotechnical evaluation, <u>however</u>, it was determined that the glacial outwash sand units were not continuous in the area of the hot spot.

#### 3.2 **Groundwater Conditions**

Groundwater depth observations were noted on the field boring logs while drilling each soil boring. Observations used to note the groundwater depth included either the depth at which free water appeared in the borehole or the depth of the first saturated soil sample. Groundwater elevations, as measured in the borings, are presented in Table 1 - Groundwater Elevation Observation - While Drilling.

Equilibrated Groundwater Elevations were also measured in Piezometer P-2 and P-6 and the Pump Test Well. The measurements from the wells were collected after developing the wells and allowing groundwater to stabilize in the well casing. The following groundwater elevations were recorded



#### Enviro-Chem RRA Geotechnical Report for Southern Concrete Pad Area Page 8 of 17

in the wells: P-2, 878.13 feet, P-6, 878.35 feet, and Pumping Well, 878.74 feet. Isolated water-bearing sand zones were found during the Preliminary Hot Spot evaluation at approximately 10 feet below ground surface (IW-1) and 18.5 feet below ground surface (IW-4). Groundwater was found at 30 to 40 feet.

Surface water elevations from two locations along Unnamed Ditch to the east of the site and of the pond to the south were also surveyed at the time of the boring location survey. Surface water elevations were measured at 875.1 and 877.8 feet along the Unnamed Ditch and at 875.1 feet in the pond.

The phreatic surface measured, corroborated by the unnamed ditch water surface elevation measurement, substantiates the absence of artesian pore water pressures. Therefore, the potentiometric surface established for slope stability and dewatering calculations is the average of the piezometric readings and contiguous detected water surface elevation.



Table 1
Ground Water Elevation Observations - While Drilling

| Boring Number | Ground Water Elevation<br>(Feet) |  |  |  |  |  |  |  |
|---------------|----------------------------------|--|--|--|--|--|--|--|
| G-1-98        | 880.1                            |  |  |  |  |  |  |  |
| G-2-98        | 877.1                            |  |  |  |  |  |  |  |
| G-3-98        | 876.2                            |  |  |  |  |  |  |  |
| G-4-98        | 867.4                            |  |  |  |  |  |  |  |
| G-5-98        | 872.6                            |  |  |  |  |  |  |  |
| G-6-98        | 879.9                            |  |  |  |  |  |  |  |
| G-7-98        | 865.8                            |  |  |  |  |  |  |  |
| G-8-98        | 863.6                            |  |  |  |  |  |  |  |
| G-9-98        | 876.4                            |  |  |  |  |  |  |  |
| G-10-98       | 867.8                            |  |  |  |  |  |  |  |
| G-11-98       | 864.6                            |  |  |  |  |  |  |  |
| G-12-98       | 864.0                            |  |  |  |  |  |  |  |
| G-13-98       | 867.9                            |  |  |  |  |  |  |  |
| G-14-98       | 865.5                            |  |  |  |  |  |  |  |
| G-15-98       | 863.1                            |  |  |  |  |  |  |  |
| G-16-98       | 866.8                            |  |  |  |  |  |  |  |
| G-17-98       | 864.6                            |  |  |  |  |  |  |  |
| G-18-98       | 872.4                            |  |  |  |  |  |  |  |
| IW-1          | 874.41*                          |  |  |  |  |  |  |  |
| IW-4          | 865.91*                          |  |  |  |  |  |  |  |

<sup>\*</sup> estimated



#### 4.0 ANALYSIS AND RECOMMENDATIONS

Based on our review of the Technical Design Report and Technical Specifications prepared by Radian, the remedial activities in the Southern Concrete Pad Area were to include removal of contaminated concrete, subbase, and soil to an initial depth of nine feet that is to be spread and treated on the northern portion of the site. The plan included excavation in the Southern Concrete Pad Area to a minimum depth of nine feet, subject to inspection and testing for contaminants, below the top of the concrete pad with the excavation performed in two stages. Radian's first stage required using a sheet pile cut-off wall to control groundwater infiltration during excavation. The second stage was to be performed in an open cut, provided a minimum four-foot thick soil cover was available between the floor of the excavation and the water bearing sand zone.

As outlined in the Technical Design Report and Technical Specifications prepared by Radian, an Indiana-registered professional engineer specializing in geotechnical engineering has prepared this report for review and concurrence by the USEPA, IDEM, and Enviro-Chem Trustees. The following report sections include discussion on the following items:

- maximum safe depth of excavation in the Concrete Pad Area,
- · preliminary excavation stability analysis, and
- location of the proposed sheet pile cut-off wall.

The objectives of the subsurface exploration were to determine the extent and the nature of the principle soil strata, the depth to groundwater, and to obtain samples of the various soils for identification of engineering soil properties. The geotechnical information collected during the investigation was used to provide the analysis and recommendations contained in the following section of this report. The thickness and horizontal extent of the various soils encountered, the zone of saturation, consistency, and assessment of shear strength are shown on the boring logs, soil cross sections and in the laboratory tests sheets.

Certain findings, however, are significant with respect to planning for the excavation of the Southern Concrete Pad as summarized below:

Sheet piling previously anticipated will not be required, because of the associated slope stabilities encountered. Sheet piling was specified for stabilization of soils along the excavation wall, which have been found to be extremely stable on their own, and to minimize dewatering of the excavation due to the previously encountered artesian conditions that have now been mitigated by the capping of the North Side Landfill (NSL) and the subsequent installation of a slurry wall between NSL and the Enviro-Chem site.

Wer Name

## Enviro-Chem RRA Geotechnical Report for Southern Concrete Pad Area Page 11 of 17

• A one-to-one slope (i.e., 45 degrees) will be required to safely excavate soils without sheet piling. Such a slope would result in a small wedge of unexcavated soil within the remedial boundary along in the southeastern corner. However, an alternative approach that will eliminate this small wedge of unexcavated soil would be the installation of temporary shoring in the south east corner of the Southern Concrete Pad Area. Consequently, temporary shoring will therefore be utilized at the southeastern corner of the excavation.

#### 4.1 Sheet Piling

An assessment of slope stability and the elimination of the potential instability of the excavated floor of the planned removal action excavation permitted the elimination of the sheet pile wall contemplated to constrain site dewatering. Field and laboratory testing of site soil samples provided estimates of the shear strength (see Appendix C, Tables 3 through 6) of in-situ soils, the methodology utilized to analyze stability of excavated slopes and the associated diagrams used for the stability analysis are presented in Section 4.3. Therefore, the site may be excavated with side slopes of one to one using incidental excavation dewatering with local sumps.

Based on past and present hydrogeologic data, it was apparent that a large finite or discontinuous water bearing sand zone (consisting of sands and gravels) exists under the North Side Landfill (NSL) and the Southern Concrete Pad area at the Enviro-Chem Site. The top of this sand layer was encountered between 8 and 22 feet below the ground surface. Based on receipt of landfill closure operation data, capping of NSL and the subsequent installation of a slurry wall between NSL and the Enviro-Chem site appears to have eliminated or significantly reduced the hydraulic connection of this zone between the two sites. The construction of surface and subsurface hydraulic barriers has had the effect of reducing the hydrostatic pressure on this zone under the Southern Concrete Pad area, as evidenced by groundwater elevation readings on-site. As a result, it is anticipated that sheet piling previously proposed for the Southern Concrete Pad area will not be required to minimize ground water infiltration into the excavation area and subsequently dewatering.

Based on present hydrogeologic data, isolated water bearing zones may be encountered in the upper nine feet of soil. However, the volume of water expected to be produced from these zones is small and may infiltrate to the lower soils before collection by sumps can be made (See Figure 6 for a schematic of the hydrogeologic regime). Two factors identified during the site exploration support the mitigation of artesian groundwater pressure within the site excavation boundaries:

- lack of saturation within the upper clay soils, and
- capping and isolation by slurry trench of NSL.



## Enviro-Chem RRA Geotechnical Report for Southern Concrete Pad Area Page 12 of 17

The degree of saturation of a soil sample is defined as the ratio of the volume of water to the volume of voids within the soil. Therefore, a value of 100% saturation is equivalent to the groundwater level in the subsurface profile. Tables 3, 4, 5, and 6 in Appendix C presents a summary of shallow soil testing data.

The water surface was also measured near the same elevation in the pump test well casing and piezometers located near Borings G-2-98 and G-6-98. In support of earlier investigations by others, who reported artesian conditions in selected site observation wells, it has been noted that the observations were made at a time before the hydrogeologic isolation of the landfill to the east. The NSL has been recently capped with impermeable soils and an engineered hydraulic barrier (slurry trench) has been constructed near the common boundary with the site. The hydraulic isolation of the landfill substantially decreased the recharge to the lower permeable sand soils, thereby reducing the hydraulic gradient and resulting piezometric pressure at the removal action site.



Based on results of the hot spot evaluation, no artesian conditions were encountered in the southwestern portion of the Southern Concrete Pad Area, further supporting the findings of the geotechnical evaluation.

## 4.2 <u>Temporary Shoring</u>

A safe excavation depth may be obtained at the proposed Remedial Boundary in the southeast corner of the Southern Concrete Pad Area by installing temporary sheetpiling to act as shoring. The temporary sheetpiling (MP117, 20 feet long or equivalent) would be driven in pairs from the ground surface after the removal of the Southern Concrete Pad and gravel subgrade. The temporary sheetpiling would start at the southeast corner, along the eastern remedial boundary, and continue to the north approximately 135 feet and along the southern remedial boundary to the west approximately 20 feet. The temporary sheet piling shoring is proposed to act as a cantilevered section during excavation of the contaminated soils. The side wall sampling procedure already in place can be utilized in this area. After backfilling this area to grade, the temporary sheetpiling would be removed.



#### 4.3 <u>Stability of Excavation Slopes</u>

The methodology utilized to analyze the stability of excavation slopes progressed by identifying: 1) modes of slope failure; 2) causes of slope failure; 3) effect of soil type on the failure surface; 4) the type of stability analysis; 5) slope stability charts; and 6) Factor of Safety. Considerations for each of these criteria are provided as follows.



## Enviro-Chem RRA Geotechnical Report for Southern Concrete Pad Area Page 13 of 17

- 1. MODES OF SLOPE FAILURE. Principal modes of failure considered in soil are (i) on a curved slip surface approximated by a circular arc, (ii) translation on a planar surface whose length is large compared to depth below ground, and (iii) displacement of a wedge-shaped mass along one or more planes of weakness.
- 2. CAUSES OF SLOPE FAILURE. Slope failures occur when the rupturing force exceeds resisting force. For Excavation (Cut) Slopes, failure may result from one or more of the factors described by:
  - (1) A change in a slope profile that adds driving weight at the top or decreases force at the base. Examples include steepening of the slope or undercutting of the toe.
  - (2) An increase of groundwater pressure, resulting in a decrease of frictional resistance in cohesionless soil or swell in cohesive material. Groundwater pressures may increase through the saturation of a slope from rainfall or snow melt, seepage from an artificial source, or rise of the water table.

An additional factor that was considered for cuts in stiff clays is the release of horizontal stresses during excavation, which may cause the formation of fissures. If water enters the fissures, the strength of the clay will decrease progressively. Therefore, the long-term stability of slopes excavated in cohesive soils is normally more critical than the short-term stability. Excavations are not expected to be open over a long period; therefore, no potential for swelling and loss of strength with time exists.

#### 3. EFFECT OF SOIL TYPE.

<u>Failure Surface</u>. In homogeneous cohesive soils, the critical failure surface usually is deep, whereas shallow surface sloughing and sliding is more typical in homogeneous cohesionless soils. In nonhomogeneous soil foundations, the shape and location of the failure depends on the strength and stratification of the various soil types.

4. TYPES OF ANALYSIS For the nine feet high soil slopes in relatively homogeneous soil, the failure surface is approximated by a circular arc, along which the resisting and rupturing forces can be analyzed.

<u>Limit Equilibrium Method.</u> A limit equilibrium method was used in this geotechnical analysis assuming the validity of Coulomb's failure criterion along an assumed failure surface. A free body of the slope is considered to be acted upon by known or assumed forces. Shear stresses induced on the assumed failure surface by the body and external forces are compared with the available shear



## Enviro-Chem RRA Geotechnical Report for Southern Concrete Pad Area Page 14 of 17

strength of the material. This method does not account for the load deformation characteristics of the materials in question.

5. SLOPE STABILITY CHARTS. (See Fundamentals of Soil Mechanics, D.W.Taylor, 1948)

#### Rotational Failure in Cohesive Soils (Ø=0)

- (1) For slopes in cohesive soils having approximately constant strength with depth, Figure 9a in Appendix A was used to determine the factor of safety.
- (2) For slopes in cohesive soil with more than one layer, centers of potentially critical circles were determined from Figure 9b in Appendix A. The appropriate shear strength was determined for each section of the arc in each stratum. The following guide for positioning the circle was used.
  - (a) If the lower soil layer is weaker, a circle tangent to the base of the weaker layer will be critical.
  - (b) If the lower soil layer is stronger, two circles, one tangent to the base of the upper weaker layer and the other tangent to the base of the lower stronger layer, should be investigated.
- 6. REQUIRED SAFETY FACTORS. The following values should be provided for reasonable assurance of stability:
  - (1) Safety factor no less than 1.5 for permanent or sustained loading conditions.
  - (2) For foundations of structures, a safety factor no less than 2.0 is desirable to limit critical movements at foundation edge.
  - (3) For temporary loading conditions or where stability reaches a minimum during construction, safety factors may be reduced to 1.3 or 1.25 if controls are maintained on load application.

The results of the stability analysis indicated that all slopes within the excavation may be safely constructed at slopes of one to one. The minimum factor of safety, calculated assuming the lowest shear strength of clay, is 2.0 for the proposed excavation. Analyses were completed to depths as much as 12 feet below existing ground surfaces. Local dewatering will be required to control precipitation and local infiltration from exposed sand lenses. Hydrostatic uplift of the clay is not anticipated.



#### 4.4 <u>Dewatering</u>

The Radian excavation plan for the Southern Concrete Pad Area included both sheetpiling and dewatering to reduce the dewatering pump rate and associated wastewater treatment system size. This plan was conservative due to incomplete site-specific data on the stratigraphy, contamination profile (depth) and hydraulic conductivity in the Southern Concrete Pad Area. In addition, two engineering considerations have changed since the initial plan that have altered the geohydrologic regime in the vicinity of the planned excavation (i.e., North Side Landfill has been capped and a slurry wall has been installed).

Current data summarized in this report has identified a complex geohydrological regime that is comprised of silty clay with intermittent sand lenses (water bearing) and a deeper aquifer system that starts at approximately 8 to 22 feet below ground surface. Versar's best engineering judgement is that the site may be safely excavated to a depth of 12 feet across the site, when coupled with freeboard to the potentiometric surface of 872 feet.

who is engineer made: J

Versar has reviewed the ground water dewatering estimate provided by Radian, see Appendix D. Radian's estimate was based upon a pad dewatering simulation with ten wells, with and without the North Side Landfill's slurry wall. Radian's estimated dewatering pump rate of less than 50 gpm appears to be conservative. We concur with the conclusions provided, predicated upon the assumed conditions of analysis. In addition, limited field measurements during the Preliminary Hot Spot Survey led Versar to estimate dewatering pump rates at approximately 20 gpm. However, without a site-specific pump test, there is still some degree of risk associated with the elimination of the sheetpiling (previously specified to mitigate dewatering pumping rates). Versar therefore recommends the following approach:

- Initially, excavation should begin in the southwest corner of the site, utilizing two 2-cubic yard back hoes to cut an approximate 20 to 40 foot strip to the northern boundary of the excavation to a depth of nine feet. When each strip is completed, a second strip to the east would be excavated while the first strip is backfilled. Dewatering should be minimal and should be accomplished through the use of localized dewatering sumps. However, a well point dewatering system should be installed as a contingency, should deeper excavation be required.
- Should dewatering rates from the well point system and sumps exceed the capacity of the
  on-site wastewater treatment system (70 gpm), highly unlikely, the alternative available
  is to add treatment capacity through the addition of another 35-gpm wastewater treatment
  system for a period of approximately two weeks during the excavation period.



## Enviro-Chem RRA Geotechnical Report for Southern Concrete Pad Area Page 16 of 17

Please note that all indications thus far lead Versar to believe that implementation of this alternative is unlikely.



## Enviro-Chem RRA Geotechnical Report for Southern Concrete Pad Area Page 17 of 17

## **5.0 QUALIFICATIONS**

This report has been prepared with generally accepted soil and foundation engineering practice to assist in the design of the project. No other warranty expressed or implied is made. The scope of this report is limited to the specific project and location described herein and our description of the project represents our understanding of the significant geotechnical aspects. If changes in the design or location of the project improvements are planned, we should be informed so the changes can be reviewed, modified and approved in writing by the geotechnical engineer.



APPENDIX A

**FIGURES** 







1 1





Figure 6 - Enviro-Chem Site

Hydrogeological Schematic for the Area Under the Southern Concrete Pad





15 April '98

Vince L. Epps 100 North Senate Avenue IDEM P.O. Box 6015 Indianapolis, IN 46206-6015 Michael McAteer U.S.E.P.A, HSRW-61 77 West Jackson Blvd. Chicago, IL 60604-3590

Geotechnical Survey of the Southern Concrete Pad Enviro-Chem Superfund Site Re:

As per our telephone conference call today, Versar is enclosing the revised Figure 7 for the Final As per our respirance can way, versar is enclosing the revised rights of the Southern Concrete Pad Area, dated 8 April '98. This revised

figure identifies the eastern most excavation limit as the Remedial Boundary.

It is also our understanding that both USEPA and IDEM are in concurrence with the recommendations of the report, including the elimination of the sheetpiling for excavation of the

If you have any questions, please feel free to call me at (215) 788-7844, Extension 222. Southern Concrete Pad area.

Sincerely,

& Jamestos

G. J. Anastos, Ph.D., P.E. Project Manager

enclosure

cc:

J Borucki (Versar) R Ball (ENVIRON) N Bernstein (NEB & A) M Dowiak (Radian)

C Gaffney (Versar)

T Harrison (CH2M Hill)

L Holish (Versar) R Hutchens (ENVIRON) J Kyle, III (B & T)

R Lukas (GEC)



REVISED: APRIL 15, 1998 ADDED SHORING

SOUTHERN CONCRETE PAD AREA EXCAVATION PLANS AND SECTIONS

DWG NO.: C4A

## FIGURE 7 - EXCAVATION BOUNDARY TOP OF WEST EMBANKMENT, ¢ UNNAMED DITCH UNNAMED DITCH 880 -REMEDIAL REMEDIAL -BOUNDARY BOUNDARY "B" UNNAMED -DITCH (APPROX) **ACCRECATI** E 725,900 SECTION "A-A" SOUTHERN CONCRETE PAD **EXCAVATION** AREA EXCAVATION SLOPE UNNAMED DITCH REMEDIAL-BOUNDARY LIMIT OF CONCRETE PAD (MIN) REMEDIAL BOUNDARY SECTION "B-B" RELOCATED **GRAPHIC SCALE** SUPPORT ZONE SOUTHERN DIVERSION CHANNEL GRAPHIC SCALE SITE PLAN **CROSS SECTIONS** DATE: MARCH 2, 1998 SOUTHERN CONCRETE PAD AREA EXCAVATION DWG NO.: C4A

PLANS AND SECTIONS

1900 FROST ROAD, SUITE 110 BRISTOL, PA 19007 (215) 788-7844



1520 Kensington Road Suite 115 Oak Brook, Illinois 60521 (708) 990-7555

| Enuro Chem Sete | CLIENT          | E.L. Holish |  |  |  |  |  |
|-----------------|-----------------|-------------|--|--|--|--|--|
| SOIL STABILITY  | Enviro Cham     | 3709 2/26   |  |  |  |  |  |
| REVIEWED / BY   | APPROVED / / BY | 2 of 3 REV  |  |  |  |  |  |

# Assumptions for Analysis

1. No openwater outside of slope
2. No surcharge or tension cracks
3. Soil is based on nearest boring homogenous to depth D
4. Thear strength is derived from cohesion only
5. failure takes place as rotation on circular arc
6. Undrained conditions for analyses

FIGURE 9A



MIDWEST REGIONAL OFFICE
1520 Kensington Road
Suite 115
Oak Brook, Illinois 60521
(708) 990-7555

Thurs of chum site ВΥ Stability CLIENT Enviro Chem ВҮ PAGE S OF 3 Holish 126

FIGURE 9B

Source D.W.Taylor



APPENDIX B

BORING LOGS WELL LOGS

| Ve                   | ANAGEMENT                                                                       |                         | Page1_ of2_         |                                          |                             |          |              |                               |                      |                                               |  |
|----------------------|---------------------------------------------------------------------------------|-------------------------|---------------------|------------------------------------------|-----------------------------|----------|--------------|-------------------------------|----------------------|-----------------------------------------------|--|
|                      |                                                                                 |                         | g No.               |                                          | G-1-98                      |          |              |                               | nitor Well No.       |                                               |  |
| roject Nan           | ne Enviro-Chem Superfund Site                                                   |                         | Site Location US 4: |                                          |                             |          |              | 21, Zionsville, Indiana       |                      |                                               |  |
| iurface Ele          | 34.0 ft bgs                                                                     | Auger Depth 32 ft bgs   |                     |                                          |                             | ft b     | gs           | Rotary Depth <u>ft bgs</u>    |                      |                                               |  |
| uadrangle            | R                                                                               | Date: Start             |                     |                                          | 1/21/98                     |          |              | Finish 2/2/98                 |                      |                                               |  |
| TM (or St            | 948.4                                                                           | Wate                    | r Leve              | ef:                                      |                             |          |              | At Completion <u>▼ ft b</u> c |                      |                                               |  |
|                      | 39° 57' Longitude 86°                                                           |                         |                     |                                          |                             |          |              | _                             |                      |                                               |  |
|                      |                                                                                 | -                       | <u> </u>            | AIVI<br>ভূ                               | MPLES                       |          |              |                               | PERSONNEL            |                                               |  |
|                      | ation <u>Southern Concrete Pad Excavation Are</u><br>ipment and Method CME-75   |                         | <u>.</u>            | 8                                        | inche                       |          |              | <b>.</b>                      | <b>5</b>             | Geologist - C. O'Neil<br>Driller - Dave Ellis |  |
| mmig cqu             | Sinch and Method Sinc 70                                                        | th bas                  | Sample No.          | Sample Type                              | 9 2                         | st)      | ue<br>'s/6") | ure<br>ant (9                 | eadir                | Helper - Justin<br>Helper -                   |  |
| Elevation            | DESCRIPTION OF MATERIALS                                                        | Graphic<br>Log<br>Depth | Samp                | Samp                                     | Sample<br>Recovery (inches) | Op (t    | N (5)        | Moisture<br>Content (%)       | PID Reading<br>(ppm) | REMARKS                                       |  |
| -                    | LEAN CLAY FILL with Sand very stiff,                                            |                         | 1                   |                                          | 11.5                        | 2.5      | 2            | 11                            | 0                    | HEIMAIIKO                                     |  |
| -<br>-<br>-885.1     | brown and gray, trace organics (CL-FILL)                                        | ///E 1                  |                     | V                                        |                             | Р        | 2 2          |                               |                      |                                               |  |
|                      |                                                                                 | <b>////</b> E '         |                     | $ \Lambda $                              |                             |          | 4            |                               |                      |                                               |  |
| 884.1                |                                                                                 | 2                       | 2                   | (-)                                      | 16                          | 2.0      | 2            | 13                            | 5.2                  |                                               |  |
| -                    |                                                                                 |                         |                     | \/                                       |                             | Р        | 3            |                               |                      |                                               |  |
| 883.1<br>-           |                                                                                 | 3                       |                     | $ \Lambda $                              |                             |          | 6            |                               |                      |                                               |  |
| -<br>882.1           |                                                                                 | 4                       | 3                   |                                          | 6                           | 2.5      | 1            | 12                            | 27.4                 |                                               |  |
| =                    | UW = 134 pcf SG = 2.76                                                          |                         | "                   | $\mathbb{N}$                             |                             | 2.5<br>P | 3            | '3                            | 27.4                 |                                               |  |
| 881.1                |                                                                                 | 5                       |                     | IXI                                      |                             |          | 5            |                               |                      |                                               |  |
| -<br>-<br>- 880.1    |                                                                                 | ₩ ¥ 6                   |                     | $V \setminus$                            | L                           |          |              |                               |                      |                                               |  |
| - 550.1              | LEAN CLAY stiff, brown and gray mottled, trace sand and gravel fill (CL)        | - "                     | 96                  | $\Lambda /$                              | 17                          | 1.5<br>B | 3            | 35                            | 6.3                  |                                               |  |
| 879.1                | UW = 127.6 pcf SG = 2.70                                                        | 7                       |                     | X                                        |                             |          | 3 2          |                               |                      | 12" Steel Casing installed                    |  |
|                      |                                                                                 |                         |                     | $V \setminus$                            |                             |          | ~            |                               |                      | to 7 feet.                                    |  |
| —878.1<br>-          |                                                                                 | 8 B                     | 97                  |                                          | 15                          | 1.5<br>P | 5            | 22                            | 14.0                 |                                               |  |
| -<br>-<br>877.1      |                                                                                 | 9                       |                     | $ \chi $                                 |                             | F        | 7            |                               |                      |                                               |  |
| -<br>-               |                                                                                 |                         |                     | $ /\rangle$                              |                             |          | 10           |                               |                      |                                               |  |
| 876.1                | LEAN CLAY hard, gray, trace gravel (CL)                                         | 10                      | 98                  |                                          | 13                          | 6.5      | 10           | 12                            | 84.0                 |                                               |  |
| _<br><br>875.1       | IIIW = 00 and 60 a 76                                                           | 1                       |                     | V                                        |                             | S        | 7            |                               |                      |                                               |  |
|                      | UW = 99 pcf SG = 2.76                                                           |                         |                     | $  / \rangle$                            |                             |          | 8            |                               |                      | Bottom of Excavation at 875.1 +/-             |  |
| -<br>-<br>-<br>874.1 | Sand lens at 11.8 feet.                                                         | 1:                      | 99                  | $\left\langle \cdot \cdot \right\rangle$ | 15                          | NA       | 5            | 10                            | 59.0                 |                                               |  |
| -<br>-<br>-<br>873.1 |                                                                                 | 1:                      | ,                   | V                                        |                             |          | 4 5          |                               |                      |                                               |  |
| 0/3.1<br>            | Sand lenses at 13.3 and 13.8 feet                                               | WE'                     |                     |                                          |                             |          | 6            |                               |                      |                                               |  |
| -<br>872.1           |                                                                                 | 14                      | 1 100               | $\langle - \rangle$                      | 14                          | 1.9      | 6            | 10                            | 5.0                  | -                                             |  |
| _                    |                                                                                 |                         |                     | $\mathbb{N}$                             | ` `                         | В        | 6            |                               |                      |                                               |  |
| 871.1<br>            |                                                                                 | 1!                      | 5                   | M                                        |                             |          | 5<br>6       |                               |                      |                                               |  |
| 870.1                | POORLY CRADED CAMP 4                                                            | 1                       | 6 101               | <u> </u>                                 | 7                           | NP       | 0            | ļ                             | 0                    | 1                                             |  |
| _                    | POORLY GRADED SAND medium to coarse grained, loose to medium dense, gray, trace | E                       | 101                 | $\backslash /$                           | ′                           | ואר      | 2            |                               |                      |                                               |  |
| 869.1<br>            | gravel, saturated (SP)                                                          | F1                      | 7                   | X                                        |                             |          | 7            |                               |                      |                                               |  |
| _<br>_<br>868.1      |                                                                                 | E11                     | 8                   | $\backslash \backslash$                  |                             |          |              |                               |                      |                                               |  |
| · · · · ·            |                                                                                 |                         | 102                 |                                          | 1                           | NP       | 6            | -                             | 1.2                  |                                               |  |
| 867.1                |                                                                                 | 1                       | 9                   | IX.                                      |                             |          | 11           |                               |                      | }                                             |  |
| Ξ                    |                                                                                 |                         |                     | $V \setminus$                            |                             |          | ''           |                               |                      |                                               |  |
|                      | VERSAR, INC.; 200 W. 22nd Stre                                                  | et: Suite 250:          | Lomi                | nard.                                    | IL BO                       | 148      | : 63         | 0/26                          | 8-859                | <br>55                                        |  |

| VCINAI MC ENVIRONMENTAL RISK MANAGEMENT |                                                                               |                         | T Field Boring Log |                      |                    |              |                       | .og                     | Page2_ of2_          |                      |                                  |                                              |
|-----------------------------------------|-------------------------------------------------------------------------------|-------------------------|--------------------|----------------------|--------------------|--------------|-----------------------|-------------------------|----------------------|----------------------|----------------------------------|----------------------------------------------|
|                                         | Project No. 3709.001 County Boo                                               |                         |                    | ring No.             | G-1-98             |              |                       |                         | _ <b>M</b> o         | nitor Well No.       | ·                                |                                              |
| Project Nan                             | roject Name Enviro-Chem Superfund Site                                        |                         |                    |                      |                    |              |                       |                         |                      |                      |                                  |                                              |
| Surface Ele                             | Surface Elevation 886.1 Completion Depth 3                                    |                         |                    | ger Det              | oth                | 32           | ft b                  | gs                      | _ Rot                | tary Depth           | ft bgs                           | <u>;                                    </u> |
|                                         | Quadrangle Rosston Sec T                                                      |                         |                    | Date: Start 1        |                    |              |                       | 3                       | _ Fini               | ish2/2/              | 98                               |                                              |
| JTM (or St<br>Plane) Cool               | ate<br>rd. N.(X) <u>971799.9</u> E.(Y) <u>725</u>                             | 948.4                   | Wa<br>Dui          | iter Lev<br>ring Dri |                    | <b>z</b> 6.0 | ) ft b                | gs                      | _ At                 | Completion _         | z ft b                           | ogs                                          |
|                                         | 39° 57' Longitude 86°                                                         |                         |                    |                      |                    |              |                       |                         |                      |                      |                                  |                                              |
|                                         | Boring Location Southern Concrete Pad Excavation Area                         |                         |                    | <u>_</u>             | AMPLES             |              |                       |                         |                      |                      | PERSONNEL  Seologist - C. O'Neil |                                              |
|                                         | ipment and Method CME-75                                                      |                         |                    | . 8                  | (inches)           |              | _                     | <b>%</b>                | Вu                   | Driller -            | Dave Ellis                       |                                              |
| • .                                     |                                                                               | Graphic<br>Log<br>Depth | Samole No.         | Sample Type          | Sample<br>Recovery | ts#)         | N Value<br>(blows/6") | Moisture<br>Content (%) | PID Reading<br>(ppm) | Helper -<br>Helper - | Justin                           |                                              |
| Elevation                               | DESCRIPTION OF MATERIALS                                                      |                         | Sam                | Sam                  | Sam                | Qp (tsf)     | N S                   | Mois                    | PID (                | REI                  | MARK                             | s                                            |
| =                                       | POORLY GRADED SAND medium to coarse                                           | =                       | 10                 |                      | 5                  | NP           | 4                     | -                       | 0                    |                      |                                  |                                              |
| 865.1                                   | grained, medium dense, gray, trace gravel (SP)                                | E 2                     | 1                  | X                    |                    |              | 9                     |                         |                      |                      |                                  |                                              |
| -                                       |                                                                               | E                       |                    | /\                   |                    |              | 12                    |                         |                      |                      |                                  |                                              |
| -864.1<br>-                             |                                                                               | E 2                     | 2 10               | )4                   | 15                 | NP           | 3                     | -                       | 0                    |                      |                                  |                                              |
| -<br>-863.1                             |                                                                               | E 2                     | 3                  | V                    |                    |              | 7<br>10               |                         |                      |                      |                                  |                                              |
| <u> </u>                                |                                                                               | F                       |                    | $  / \rangle$        |                    |              | 10                    |                         | '                    |                      |                                  |                                              |
| 862.1                                   |                                                                               | E 2                     | 4 10               | 55                   | 20                 | NP           | 4                     |                         | 0                    |                      |                                  |                                              |
| -<br>-<br>-861.1                        |                                                                               | E2                      | 5                  | V                    |                    |              | 9                     |                         |                      |                      |                                  |                                              |
| - 001.11                                |                                                                               | E'                      |                    | -1/                  |                    |              | 10                    |                         |                      |                      |                                  |                                              |
| 860.1                                   |                                                                               | -2                      | 6 10               | 6                    | 14                 | NP           | 6                     | -                       | 0                    |                      |                                  |                                              |
| -                                       |                                                                               | I I                     |                    | -                    |                    |              | 7                     |                         |                      |                      |                                  |                                              |
| -859.1                                  |                                                                               | -2                      | 1                  | $-1$ $\wedge$        | 1                  |              | 19                    |                         |                      |                      |                                  |                                              |
| 858.1                                   | Grading to sandy silt.                                                        | 2                       | 8 10               | ) <del>7</del>       | 11                 | NP           | 11                    |                         | 0                    |                      |                                  |                                              |
| -                                       | Grading to buildy diff.                                                       | E E                     |                    | $ \cdot $            | ` `                |              | 12                    |                         |                      |                      |                                  |                                              |
| — 857.1<br>-<br>-                       |                                                                               | 2                       | 9                  | ١X                   |                    |              | 13                    |                         |                      |                      |                                  |                                              |
| -<br>-<br>856.1                         | LEAN CLAY very stiff to hard, brown and                                       | 3                       | 0 10               | <u> </u>             | 16                 | 3.0          | 3                     | 10                      | 0                    | Disturbed Sa         | mnlo                             |                                              |
| <u> </u>                                | gray mottled, trace sand (CL)                                                 |                         |                    | "\\ /                |                    | P P          | 17                    | '                       |                      | Disturbed 3a         | mpie.                            |                                              |
| <del></del> 855.1                       |                                                                               | 3                       | 1                  | IX                   |                    |              | 16<br>25              |                         |                      |                      |                                  |                                              |
|                                         |                                                                               | <b>3</b>                | 2                  |                      | 1                  | 1            | 1                     |                         |                      | ]                    |                                  |                                              |
| =                                       |                                                                               |                         | 2 10               | ) <b>"</b>  \ /      | 6                  | 7.0<br>S     | 13<br>15              | 11                      | 0                    |                      |                                  |                                              |
| 853.1                                   |                                                                               | <b>₩</b> 3              | 3                  | IX                   |                    |              | 54                    |                         |                      |                      |                                  |                                              |
| <br>852.1                               |                                                                               | 3                       | 4                  | / \                  |                    | <u> </u>     |                       |                         |                      |                      |                                  |                                              |
|                                         | Boring terminated at 34 feet and tremmie grouted with cement-bentonite grout. |                         |                    |                      |                    |              |                       |                         |                      |                      |                                  |                                              |
|                                         |                                                                               |                         |                    |                      |                    |              |                       |                         |                      |                      |                                  |                                              |
|                                         |                                                                               |                         |                    |                      |                    |              |                       |                         |                      |                      |                                  |                                              |
|                                         |                                                                               |                         |                    |                      |                    |              |                       |                         |                      |                      |                                  |                                              |
| İ                                       |                                                                               |                         |                    |                      |                    |              |                       |                         |                      |                      |                                  |                                              |
|                                         |                                                                               |                         |                    |                      |                    |              |                       |                         |                      |                      |                                  |                                              |
|                                         |                                                                               |                         |                    |                      |                    |              |                       |                         |                      |                      |                                  |                                              |
|                                         |                                                                               |                         |                    |                      |                    |              |                       |                         |                      |                      |                                  |                                              |
|                                         |                                                                               |                         |                    |                      |                    |              |                       |                         |                      |                      |                                  |                                              |

VERSAR, INC.; 200 W. 22nd Street; Suite 250; Lombard, IL 60148; 630/268-8555

| Ve                      | Saling environmental risk ma                                                | NAGEMENT                | . 1           | -1610               | ) B                | Orir     | ıg L         | .og                     |                      | Page1 _ of2                                 |
|-------------------------|-----------------------------------------------------------------------------|-------------------------|---------------|---------------------|--------------------|----------|--------------|-------------------------|----------------------|---------------------------------------------|
|                         | 3709.001 County Boo                                                         |                         |               | g No.               |                    | G-       | 2- <u>98</u> |                         | _ Mo                 | nitor Well No. <u>MW-G</u>                  |
| oject Nam               | Enviro-Chem Superfund Site                                                  |                         | Site l        | .ocati              | ion .              |          | <u>L</u>     | JS 4                    | 21, Z                | ionsville, Indiana                          |
| ırface Ele              | vation 885.1 Completion Depth                                               | 26.0 ft bgs             | Auge          | r Dep               | th                 | 24       | ft b         | gs                      | _ Rot                | ary Depth <u>ft bgs</u>                     |
|                         | Rosston Sec. T.                                                             | _ R                     |               |                     |                    | 1/2      | 9/98         | 3                       | _ Fini               | sh <u>2/4/98</u>                            |
| 「M (or Sta<br>ane) Coor | ate<br>rd. N.(X) <u>921737.8</u> E.(Y) <u>725</u> 9                         | 941.9                   | Wate<br>Durin |                     |                    | 2 8.0    | ) ft t       | gs                      | _ At                 | Completion <u>T</u> ft bo                   |
|                         | 39° 57' Longitude 86° 1                                                     |                         |               |                     |                    |          |              |                         |                      |                                             |
|                         | ation Southern Concrete Pad Excavation Area                                 |                         | -             | _ <b>S</b> ,        |                    |          | ES_          | · · ·                   |                      | PERSONNE                                    |
|                         |                                                                             |                         | ] .           | 9                   | (inches)           |          |              | :a                      | 6                    | Geologist - S. Conway  Driller - Dave Ellis |
| ming Equi               | ipment and Method <u>CME-75</u>                                             | Pic Pic Sign            | S<br>S        | e T                 | )<br>(ery          | £        | ue<br>s/6")  | ure<br>or tr            | eadin                | Helper - Justin                             |
| levation                | DESCRIPTION OF MATERIALS                                                    | Graphic<br>Log<br>Depth | Sample No.    | Sample Type         | Sample<br>Recovery | d (t     | L Val        | Moisture<br>Content (%) | PID Reading<br>(ppm) | REMARKS                                     |
|                         | LEAN CLAY FILL with Sand medium stiff to                                    |                         | 64            | <del>"</del> /      | 6                  | .75      |              | 15                      | 7.3                  | NEIVIANNO                                   |
| 884.1                   | stiff, brown, roots near surface (CL FILL)                                  |                         |               | V                   |                    | В        |              |                         |                      |                                             |
| 584.1                   |                                                                             | <b>1</b>                |               | $ \Lambda $         |                    |          |              |                         |                      |                                             |
| 883.1                   | •                                                                           | E 2                     | 65            |                     | 12                 | 1.75     |              | <br>                    | 000 +                |                                             |
|                         |                                                                             |                         |               | $\backslash /$      | '-                 | P        | 3            |                         |                      |                                             |
| 882.1                   |                                                                             | 3                       |               | X                   |                    |          | 4            |                         |                      |                                             |
| 881.1                   |                                                                             | <b>1</b> 4              |               |                     |                    |          |              |                         |                      |                                             |
|                         |                                                                             |                         | 66            | N / I               | 16                 | 1.6      | 4            | 15                      | 127                  |                                             |
| 880.1                   |                                                                             | 5                       |               | X                   |                    |          | 4<br>5       |                         |                      |                                             |
|                         |                                                                             |                         |               | $/\setminus$        |                    |          | 5            |                         |                      |                                             |
| 879.1                   | SANDY CLAY stiff, dark gray (CL)                                            | 6                       | 150           |                     | 20                 | 1.4<br>B | I            | 21                      | 10                   |                                             |
| 878.1                   |                                                                             | 7                       |               | V                   |                    | 6        | 4            |                         |                      | 12" Steel Casing installe                   |
| Ì                       | Sand lens with pebbles at 7.3 feet.                                         |                         |               | $ / \setminus$      | 1                  | l        | 5            | <br>                    |                      | to 7 feet.                                  |
| 877.1                   | CLAY soft to medium stiff, gray, trace sand                                 | <del>₩</del> 28         | 151           |                     | 2                  | 0.5      | ST           | 25                      |                      |                                             |
| 876.1                   | and gravel (CL) POORLY GRADED SAND coarse grained.                          | 9                       |               |                     |                    | P        |              |                         |                      |                                             |
| 870.1                   | loose, gray (SP)                                                            | E,                      |               |                     |                    |          |              |                         |                      |                                             |
| 875.1                   |                                                                             | <u>+</u> 10             | 152           |                     | 4                  | NP       | NA           |                         | NA                   |                                             |
|                         |                                                                             | E .                     | ]             | $\mathbb{N}$        |                    | '''      |              |                         |                      | Bottom of Excavation at                     |
| -874.1                  |                                                                             | F 11                    |               | ľ                   |                    |          |              |                         |                      | 874.9 +/-                                   |
| -873.1                  | LEAN CLAY stiff, gray, trace sand, little                                   | 12                      | 2             | $\langle \ \rangle$ |                    | 4 -      | <u> </u>     | _                       |                      |                                             |
|                         | gravel (CL)                                                                 |                         | 153           | $\backslash /$      | 14                 | 1.0<br>E | 5            | 9                       | 0                    |                                             |
| -872.1                  | UW = 147 pcf                                                                | 13                      | 3             | X                   |                    | Ì        | 5            |                         |                      |                                             |
| -871.1 -                |                                                                             | <b>//</b> //            | ,             | $V \setminus$       |                    |          |              |                         |                      |                                             |
| 371.1                   | POORLY GRADED SAND medium to coarse grained, loose, gray, trace gravel (SP) | E'                      | 154           | 1                   | 14                 | NP       | 1 2          | -                       | 0                    |                                             |
| -870.1                  | gramos, rosso, gray, trace graver (c),                                      | 19                      | 5             | l X                 |                    |          | 3            |                         |                      |                                             |
|                         |                                                                             |                         |               | $V \setminus$       |                    |          | 6            |                         |                      |                                             |
| -869.1                  |                                                                             | F 16                    | 155           | 1                   | 10                 | NP       | 1            | -                       | 0                    |                                             |
| -868.1                  |                                                                             | E 17                    | 7             | 1                   |                    |          | 5            |                         |                      |                                             |
|                         |                                                                             |                         |               | $ /\rangle$         |                    |          | 5            |                         |                      |                                             |
| -867.1                  | POORLY GRADED SAND with Gravel                                              | 18                      | 156           |                     | 18                 | NP       | 4            | <del>  -</del>          | 0                    | Cc = 0.96                                   |
| 0664                    | medium to coarse grained, medium dense, gray (SP)                           | <b>WF.</b>              |               | V                   |                    |          | 6<br>8       |                         |                      | Cu = 7.5                                    |
| -866.1                  |                                                                             | F 19                    | 7             | $ \Lambda $         |                    |          | 7            |                         |                      |                                             |
|                         | Gravel lens at 19.8 feet                                                    | <b>数位数位置</b>            | 1             | 1/ \                | 1                  | I        | 1            |                         |                      |                                             |

| Ve          | 1.22           | MENTAL RISK MA       | NAGE                       | MENT           |                     | -ielc      | 1 B               | orin                        | g L      | .og       |                         | Page                 | 2 of _                   | 2             |      |
|-------------|----------------|----------------------|----------------------------|----------------|---------------------|------------|-------------------|-----------------------------|----------|-----------|-------------------------|----------------------|--------------------------|---------------|------|
|             |                |                      | CountyBoo                  |                |                     |            | g No.             |                             | G-2      | 2-98      |                         | _ Moi                | nitor Well N             | lo. <u>MW</u> | /-G2 |
| Project Nan | ne             | Enviro-Chem          | Superfund Site             |                |                     | Site L     | .ocati            | on _                        |          | U         | S 42                    | 21, Zi               | onsville, l              | ndiana        |      |
| Surface Ele | vation         | 885.1                | _ Completion Depth :       | 26.0 ft        | bgs                 | Auge       | r Depi            | th                          | 24       | ft bo     | ąs_                     | Rot                  | ary Depth                | ft b          | gs   |
| Quadrangle  | Rosstor        | 1 Se                 | s τ                        | _ R            |                     | Date:      | Start             | :                           | 1/2      | 9/98      | 3                       | _ Fini               | sh2/4                    | 4/98          |      |
| UTM (or St  | ate            |                      | E.(Y) 725                  |                |                     | Wate       | r Leve            | el:                         |          |           |                         |                      | Completion               |               |      |
|             |                |                      | gitude 86° 1               |                |                     |            |                   |                             |          |           |                         | -<br>                |                          |               |      |
|             |                |                      | ad Excavation Area         |                |                     | <u> </u>   | S                 | AM<br>a                     | PLE      | <u>:S</u> |                         |                      |                          | RSONI         |      |
| _           | <del></del>    |                      |                            |                |                     | ] .        |                   | Sample<br>Recovery (inches) |          |           | <u>.</u>                | 6                    | Geologist -<br>Driller - | Dave Ell      |      |
| Drining Equ | ilipment and i | Method <u>CME-75</u> |                            | Pic<br>Pic     | ا<br>گووئ           | Sample No. | Sample Type       | 2                           | £        | s/6")     | Moisture<br>Content (%) | PID Reading<br>(ppm) | Helper -                 | Justin        |      |
| Elevation   | DECCE          | DIDTION OF           | MATERIALS                  | Graphic<br>Log | Depth<br>(feet bgs) | gmes       | amp               | lecov                       | Op (tsf) | 2 < S     | Aoist<br>Conte          | PD R                 | Helper -                 | ENA A DI      | VC   |
| - Elevation |                | AY with Sand hard    | MATERIALS<br>, gray, trace |                |                     | 157        |                   |                             | 6.8      |           |                         | 0                    |                          | <u>EMARI</u>  | NO   |
| F 864.1     | gravel (C      | L)                   |                            |                | Ē,                  |            | V                 |                             | В        | 8<br>12   |                         |                      |                          |               |      |
| 864.1       |                |                      |                            |                | <u> </u>            |            | $ \Lambda $       | ļ                           | ļ        | 21        |                         |                      |                          |               |      |
| 863.1       | •              |                      |                            |                | E 22                | 158        | (-)               | 14                          | 4.5+     | 6         |                         | 0                    |                          |               |      |
|             |                |                      |                            |                | Ε                   | 1          | $  \setminus /  $ |                             | Р        | 10        |                         |                      |                          |               |      |
| 862.1       |                |                      |                            |                | <u> </u>            |            | ΧI                |                             |          | 13<br>14  |                         |                      |                          |               |      |
| 861.1       |                | Sand lens at 23.     | 6 feet.                    |                | _ 24                | 159        |                   |                             |          |           |                         | 0                    |                          |               |      |
|             |                |                      |                            |                |                     | 159        | NA                | 18                          | •        | 7<br>13   | •                       | U                    |                          |               |      |
| 860.1       |                |                      |                            |                | _ 25                |            | X                 |                             |          | 14<br>16  |                         |                      |                          |               |      |
| 859.1       |                |                      |                            |                | E 26                |            | V V               |                             |          |           |                         |                      |                          |               |      |
| 859.1       |                | rminated at 26 fee   |                            |                | _ 26                | )          |                   |                             |          |           |                         |                      |                          |               |      |
|             | giodica        | With coment bento    | into groot.                |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
| <u> </u>    |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           | l                       |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             | •              |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             | 1              |                      |                            |                |                     |            |                   |                             |          |           | }                       |                      | 1                        |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   | <br>                        | }        |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      | ļ                        |               |      |
|             |                |                      | •                          |                |                     |            |                   |                             |          | ļ         |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     | Ì          |                   |                             |          |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             | ļ        |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |
|             |                |                      |                            |                |                     |            |                   |                             |          |           |                         |                      |                          |               |      |

PROJECT TITLE ENVIRO-CHEM BORING NO. G-2-98 WELL NO. G-2 LOCATION ZIONSVILLE, IN DATE STARTED 1-29-98 COMPLETED 1-29-98 DRILLING CONTRACTOR PHILIP ENVIRONMENTAL DRILLER DAVE ELLIS RIG No. CME-75 METHOD HSA FLUIDS NONE GEOLOGIST STEVE CONWAY, HANDEX COMMENTS N 921,799.89, E 725,948.40 PROTECTIVE RISER CAP TOP OF CASING ELEVATION 887.3 APPROXIMATE EXISTING GROUND SURFACE EL.885.12 MSL KKK KKK KKK KKK VALATI VALATARIA (ALATARIA) PLUG 12" DIA. BENTONITE/CEMENT STEEL CASING **BOREHOLE** DIAMETER BENTONITE SAND - BOTTOM OF BORING WELL CONSTRUCTION NOTES: 1. TYPE RISER ABOVE W.T. 2" PVC 2. TYPE RISER BELOW W.T. 2"# PVC RISER STACK MONITORING WELL 3. TYPE OF SCREEN 0.010" CONT. SLOT PVC

MSL.

INSTALLATION DIAGRAM



NOT TO SCALE

3. TYPE OF PROTECTIVE CASING STEEL 4. ELEVATION OF WATER 878.13 FT

5. WATER LEVEL READING ON 9.0 FT BELOW TOC FEB 24, 1998

| VC                   | NO INC. ENVIRONMENTAL RISK MA                                                  | NAGEMENT                              |            | Field                   | d B                  | orir     | ng L                  | -og                     |                      | Page1 of2_                              |
|----------------------|--------------------------------------------------------------------------------|---------------------------------------|------------|-------------------------|----------------------|----------|-----------------------|-------------------------|----------------------|-----------------------------------------|
|                      | 3709.001 County Boo                                                            |                                       |            | g No.                   |                      | G-       | 3- <u>98</u>          | l                       | _ <b>M</b> o         | nitor Well No.                          |
| Project Nam          | ne Enviro-Chem Superfund Site                                                  |                                       | Site I     | .ocati                  | ion .                |          |                       | JS 4:                   | 21, Z                | ionsville, Indiana                      |
| Surface Ele          | vation885.2 Completion Depth                                                   | 34.0 ft bgs                           | Auge       | r Dep                   | th                   | 32       | ft b                  | gs                      | Rot                  | tary Depth ft bgs                       |
|                      | Rosston Sec T                                                                  |                                       |            |                         |                      |          |                       |                         |                      |                                         |
| JTM (or Sta          | ate                                                                            |                                       | Wate       | r Lev                   | el:                  |          |                       |                         |                      |                                         |
|                      | rd. N.(X) 921664.5 E.(Y) 725                                                   |                                       |            |                         | ling <u>Z</u>        | 2 9.0    | ) ft t                | ogs                     | _ At                 | Completion <u>T</u> ft bgs              |
| Latitude             | 39° 57' * Longitude 86° 1                                                      | 6'                                    |            | S                       | ΑM                   | PLI      | ES                    |                         |                      | PERSONNEL                               |
| Boring Loca          | ation Southern Concrete Pad Excavation Are                                     | a                                     |            |                         | 185)                 |          |                       |                         |                      | Geologist - C. O'Neil                   |
| Drilling Equi        | ipment and Method <u>CME-75</u>                                                |                                       | نے ا       | γρε                     | (inches)             |          | -                     | <u> </u>                | 9                    | Driller - Dave Ellis<br>Helper - Justin |
|                      |                                                                                | phic sth                              | Sample No. | Sample Type             | Ple V                | tsf)     | alue<br>vs/6          | ture                    | Read<br>(            | Helper - Justin<br>Helper -             |
| Elevation            | DESCRIPTION OF MATERIALS                                                       | Graphic<br>Log<br>Depth<br>(feet bgs) | Sam        | Sam                     | Sample<br>Recovery ( | Op (tsf) | N Value<br>(blows/6") | Moisture<br>Content (%) | PID Reading<br>(ppm) | REMARKS                                 |
|                      | LEAN CLAY With Sand stiff to very stiff,                                       | ////E                                 | 10         | 1                       | 4                    | 1.0      | 1                     | 21                      | 0                    |                                         |
| 884.2                | brown to brown and gray mottled, trace<br>gravel and brick fragments (CL-FILL) |                                       |            | V                       |                      | Р        | 2                     |                         |                      |                                         |
| - 884.2              | graver and blick fragments (CE FIEE)                                           | 1 T                                   |            | $ \Lambda $             |                      |          | 1                     |                         |                      |                                         |
|                      | •                                                                              | ///E 2                                |            |                         |                      |          |                       | 10                      |                      |                                         |
| =                    |                                                                                |                                       | 11         | N / I                   | 9                    | 1.5<br>P | 3                     | 18                      | 0                    |                                         |
| 882.2                |                                                                                | 3                                     |            | ΙXΙ                     |                      |          | 2                     |                         |                      |                                         |
| _                    | UW = 131 pcf SG = 2.72                                                         |                                       | İ          | $ / \setminus  $        |                      |          | 4                     |                         |                      |                                         |
| 881.2                |                                                                                | 4                                     | 12         |                         | 12                   | 2.0      | 1                     | 21                      | 2.7                  |                                         |
| =                    |                                                                                |                                       |            | $  \setminus  $         |                      | ₽        | 4                     |                         |                      |                                         |
| 880.2                |                                                                                | 5                                     |            | M                       |                      |          | 5                     |                         |                      |                                         |
| E 879.2              |                                                                                | <b>€</b> 6                            |            |                         |                      |          |                       |                         |                      |                                         |
| E "                  |                                                                                |                                       | 13         | $\Lambda \Lambda$       | 20                   | 1.9<br>B | 2 2                   | 21                      | 26                   |                                         |
| 878.2                | SANDY SILT stiff, gray, trace organics (ML)                                    | 7                                     |            | ΙX                      |                      | _        | 2                     |                         |                      | 12" Steel Casing installed              |
|                      | UW = 129 pcf SG = 2.64                                                         |                                       |            | $ / \setminus$          |                      |          | 3                     |                         |                      | to 7 feet.                              |
| 877.2                | POORLY GRADED SAND loose, fine to                                              | 8                                     | 14         | $(\ \ )$                | 16                   | NP       | 1                     | 18                      | -                    | 1                                       |
| Ē.                   | medium grained, brown (SP)                                                     | E.                                    |            | $  \setminus  $         |                      |          | 2 2                   |                         |                      |                                         |
| 876.2                |                                                                                | <b>₩</b> 9                            |            | ľ                       |                      |          | 4                     |                         |                      |                                         |
| 875.2                | LEAN CLAY very stiff to hard, brown and                                        | 10                                    |            | $V \setminus$           |                      |          |                       |                         |                      |                                         |
| = 0,3.2              | gray mottled (CL) UW=138 pcf SG=2.74                                           |                                       | 15         | N /                     | 20                   | 4.1<br>B | 10                    | 13                      | 20.6                 |                                         |
| 874.2                | Grades with isolated sand streaks and                                          | E 11                                  |            | ĺΧ                      |                      |          | 11                    |                         | Ì                    |                                         |
| E 1                  | lenses.                                                                        |                                       |            | $ /\rangle$             |                      |          | 12                    | ļ                       | 1                    | Bottom of Excavation at 874.1 +/-       |
| 873.2                | SANDY CLAY/CLAYEY SAND very stiff,                                             | 12                                    | 16         | $\langle \cdot \rangle$ | 20                   | 2.2      | 4                     | 9                       | 8.3                  |                                         |
| E                    | gray, trace gravel (CL/SC)                                                     |                                       |            | \/                      |                      | S        | 6                     |                         |                      |                                         |
|                      |                                                                                | 13                                    |            | ľ                       |                      |          | 9                     |                         |                      |                                         |
| -<br>-<br>-<br>871.2 | Sand lense at 13.5 feet                                                        | 14                                    |            | / /                     |                      |          |                       |                         |                      |                                         |
| E ", " [             | LEAN CLAY with Sand very stiff to hard, gray, trace gravel (CL)                | <b>////</b>                           | 17         | Ν7                      | 20                   | 5.3<br>B | 5<br>8                | 9                       | 19                   |                                         |
| 870.2                | g.o., trace graver (CL)                                                        | 15                                    | ;          | ΙX                      |                      |          | 11                    |                         |                      |                                         |
| =                    | Sand lens at 15.5 feet                                                         | <i>/////</i> E                        |            | $ /\rangle$             |                      |          | 11                    |                         |                      |                                         |
| 869.2                | UW = 150 pcf                                                                   | 16                                    | 18         | $\langle - \rangle$     | 16                   | 4.5+     | -                     | <del>  -</del> -        | 18                   | -                                       |
|                      |                                                                                |                                       |            | $  \setminus  $         |                      | Р        |                       |                         |                      |                                         |
| 868.2                |                                                                                | 17                                    |            | ΙĂ                      |                      |          |                       |                         |                      |                                         |
| -<br><br>867.2       |                                                                                | 18                                    | L          | V                       |                      |          |                       |                         |                      | ]                                       |
| 307.2                |                                                                                | W/F 18                                | 19         | /                       | 10                   | 2.9<br>B | 4                     | 11                      | 1.8                  |                                         |
| 866.2                |                                                                                | E 19                                  | ,          | IV                      |                      |          | 6                     | 1                       |                      |                                         |
| 1 000.Z I            |                                                                                |                                       |            |                         |                      |          |                       |                         |                      |                                         |
| - 300.2<br> -        | UW = 144 pcf                                                                   |                                       |            | $ /\rangle$             |                      |          | 9                     |                         |                      |                                         |

| VC                        | MC ENVIRONMENTAL RISK MA                                        | NAGE         | MENT                | . !           | -1610                   | ם א                         | orın     | g L          | .og                     |                      | Page                 | <u>2</u> of _ | 2     |
|---------------------------|-----------------------------------------------------------------|--------------|---------------------|---------------|-------------------------|-----------------------------|----------|--------------|-------------------------|----------------------|----------------------|---------------|-------|
|                           | 3709.001 CountyBoo                                              |              |                     |               | g No.                   |                             | G-3      | <u> 98</u>   |                         | _ Mo                 | nitor Well N         | ło            |       |
| Project Nan               | Enviro-Chem Superfund Site                                      |              |                     | Site L        | .ocati                  | on .                        |          | <u> </u>     | S 42                    | 21, Z                | ionsville,           | Indiana       |       |
| Surface Ele               | vation 885.2 Completion Depth                                   | 34.0 ft      | <u>bgs</u>          | Auge          | r Dep                   | th                          | 32       | ft b         | as_                     | _ Ro1                | ary Depth            | ft b          | gs    |
| Quadrangle                | Rosston Sec. T.                                                 | _ R          |                     | Date:         | Start                   | ·                           | 1/2      | 3/98         | 3                       | _ Fin                | ish1/2               | 26/98         |       |
| UTM (or St<br>Plane) Cooi | ate<br>d. N.(X) <u>921664.5</u> E.(Y) <u>725</u>                | <u>941.5</u> |                     | Wate<br>Durin | r Leve<br>g Drill       | el:<br>ling <u>Ş</u>        | z 9.c    | ft b         | gs                      | _ At                 | Completion           | <u>▼ f</u> f  | t bgs |
| Latitude                  | 39° 57' * Longitude 86° 1                                       | <u>6 ·</u>   |                     |               | 9                       | <u>Λ Ν Λ</u>                | PLI      |              |                         |                      | PE                   | RSONI         | NICI  |
|                           | ation Southern Concrete Pad Excavation Area                     |              |                     |               |                         | (88)                        |          |              |                         |                      |                      | - C. O'Ne     |       |
| Drilling Equ              | ipment and Method CME-75                                        | <u> </u>     |                     | ا نے ا        | γρe                     | Sample<br>Recovery (inches) |          | _            | €                       | 6<br>Li              | _                    | Dave Ell      |       |
|                           |                                                                 | Graphic      | Depth<br>(feet bgs) | Sample No.    | Sample Type             | ple                         | (tsf)    | alue<br>ws/6 | Moisture<br>Content (%) | PID Reading<br>(ppm) | Helper -<br>Helper - | Justin        |       |
| Elevation                 | DESCRIPTION OF MATERIALS                                        | 78 3         | De 5                | Sar           | San                     | San<br>Rec                  | Ωp       | N<br>(B)     | Moi                     | Old<br>(ppr          | R                    | EMAR          | KS    |
| E                         | LEAN CLAY with Sand very stiff to hard, gray, trace gravel (CL) |              |                     | 20            | $\setminus$             | 18                          | 3.8<br>B | 7            | 13                      | 8.3                  |                      |               | _     |
| 864.2                     | g.c.,,                                                          |              | 21                  |               | X                       |                             |          | 12<br>16     |                         |                      |                      |               |       |
| E                         |                                                                 |              | Ė                   |               | $V \setminus$           |                             |          | 10           |                         |                      |                      |               |       |
| 863.2<br>                 | Sand lens at 22 feet                                            |              | — 22<br>—           | 21            | 7                       | 20                          | 4.5<br>B | 10<br>14     |                         | 0.8                  |                      |               |       |
| 862.2                     |                                                                 |              | E 23                | 3             | ΙXΙ                     |                             |          | 11           |                         |                      | ĺ                    |               |       |
| E                         | POORLY GRADED SAND medium to coarse                             | <i>\\\\\</i> | E                   |               | $ / \setminus$          |                             |          | 16           |                         |                      |                      |               |       |
| 861.2                     | graded, medium dense gray (SP)                                  |              | <u> </u>            | 22            |                         | 20                          | 4.4      |              | 11                      | 1.3                  |                      |               |       |
| 860.2                     | LEAN CLAY with Sand very stiff to hard, gray (CL)               |              | _<br>_ 25           | 5             | $ \chi $                |                             | В        | 15<br>20     |                         |                      |                      |               |       |
| <b>F</b>                  | gic, (cz.)                                                      |              |                     |               | $ /\rangle$             |                             |          | 24           |                         |                      |                      |               |       |
| 859.2                     |                                                                 |              | _ 26                | 23            | $\langle \cdot \rangle$ | 17                          | 7.02     | 17           | 11                      | 1.3                  | 1                    |               |       |
| 858.2                     |                                                                 |              | E 27                | ,             | $ \bigvee $             |                             | S        | 18<br>23     |                         |                      |                      |               |       |
| E 330.2                   |                                                                 |              | = "                 |               | $ \Lambda $             |                             |          | 34           |                         |                      |                      |               |       |
| 857.2                     |                                                                 |              | 28                  | 3 24          | $\langle - \rangle$     | 22                          | 10.5     | 10           | 10                      | 2.4                  |                      |               |       |
| E                         |                                                                 |              | E 29                |               | V                       |                             | s        | 21<br>25     |                         |                      |                      |               |       |
| <u></u> 856.2             |                                                                 |              | E                   | <b>'</b>      | $ \Lambda $             |                             |          | 47           |                         |                      |                      |               |       |
| 855.2                     | Grades to LEAN CLAY                                             |              | 30                  | 25            | $\langle - \rangle$     | 12                          | 4.5+     | 20           | 12                      | 6.1                  | -                    |               |       |
| E                         |                                                                 |              | ŧ                   |               | $  \bigvee$             |                             | Р        | 50<br>50/4   |                         |                      |                      |               |       |
| 854.2                     |                                                                 |              | 31                  |               | $ \Lambda $             |                             |          | p0,4         |                         |                      |                      |               |       |
| 853.2                     | SILT hard, gray, with interbedded clay                          |              | £ 32                | 2 26          | $\langle - \rangle$     | 12                          | 4.7      | 47           | 7                       | <u> </u>             | -                    |               |       |
|                           | streaks (ML)                                                    |              | Ė.                  |               | $\mathbb{N}$            |                             | S        | 43           |                         |                      |                      |               |       |
| -852.2<br>-               |                                                                 |              | <u>-</u> 33         | 3             | M                       |                             | !        | 50<br>0/3.   | <br>5                   |                      |                      |               |       |
| 851.2                     | Boring terminated at 34 feet and tremmie                        | ЩЩ           | E 34                | 1             | <u> </u>                | <u> </u>                    |          |              |                         | <u> </u>             | _                    |               |       |
|                           | grouted with cement-bentonite grout.                            |              |                     |               |                         |                             |          |              |                         |                      |                      |               |       |
|                           |                                                                 |              |                     |               |                         |                             |          |              |                         |                      |                      |               |       |
|                           |                                                                 |              |                     |               |                         |                             |          |              |                         |                      |                      |               |       |
|                           |                                                                 |              |                     |               |                         |                             |          |              |                         |                      |                      |               |       |
|                           |                                                                 |              |                     |               |                         |                             |          |              |                         |                      |                      |               |       |
|                           |                                                                 |              |                     |               |                         |                             |          |              |                         |                      |                      |               |       |
|                           |                                                                 |              |                     |               |                         |                             |          |              |                         |                      |                      |               |       |
|                           |                                                                 |              |                     |               |                         |                             |          |              |                         |                      |                      |               |       |
|                           |                                                                 |              |                     |               |                         |                             |          | L_           | L                       |                      |                      |               |       |

| VC                | NO ENVIRONMENTAL RISK MA                                      | NAGEMEN                 | Т          | riei                                             | a B                         | orır      | ıg L         | .og    |              | Page1 _ of2                                           |
|-------------------|---------------------------------------------------------------|-------------------------|------------|--------------------------------------------------|-----------------------------|-----------|--------------|--------|--------------|-------------------------------------------------------|
|                   | 3709,001 County Boo                                           |                         |            | ng No.                                           | ·                           | G-4       | <u> 4-98</u> |        | _ Mo         | nitor Well No.                                        |
| roject Nar        | ne Enviro-Chem Superfund Site                                 |                         | Site       | Locat                                            | ion .                       |           | <u> </u>     | S 4:   | 21, <u>Z</u> | ionsville, Indiana                                    |
| urface Ele        | evation884.4 Completion Depth                                 | 24.0 ft bgs             | Aug        | er Dep                                           | th                          | 22        | ft b         | gs _   | _ Rot        | tary Depthft bgs                                      |
|                   | Rosston Sec T                                                 |                         |            |                                                  |                             |           |              |        |              |                                                       |
| M (or St          | ate                                                           |                         | Wat        | er Lev                                           | el:                         |           |              |        |              |                                                       |
|                   | rd. N.(X) 921605.7 E.(Y) 725                                  |                         |            |                                                  |                             |           |              |        | - At         | Completion <u>▼ ft bg</u>                             |
| titude            | 39° 57' " Longitude 86° 1                                     | 6                       |            | S                                                | ΑM                          | PLI       | ES           |        |              | PERSONNE                                              |
| ring Loc          | ation Southern Concrete Pad Excavation Are                    | <u>a</u>                | -          |                                                  | Sample<br>Recovery (inches) |           |              |        |              | Geologist - Steve Conw                                |
| rilling Equ       | ipment and Method <u>CME-75</u>                               | [ <sub>0</sub> ]        | <u>.</u>   | Sample Type                                      | (i)                         |           | ũ            | _ €    | guig         | Driller - Dave Ellis Helper - Justin Helper - REMARKS |
|                   |                                                               | Graphic<br>Log<br>Depth | Sample No. | a dr                                             | over 1                      | (tsf)     | alue<br>ws/6 | sture  | Hea (E       | Helper -                                              |
| levation          | DESCRIPTION OF MATERIALS                                      | ؞ڴٳڎٷ                   | San        | San                                              | San                         | ð         | 2 S          | ຂຶ້ ວິ | ₽ <u>@</u>   | REMARKS                                               |
|                   | LEAN CLAY FILL with Sand medium stiff to                      |                         | 79         | 17                                               | 15                          | 2.0<br>P  | 1 3          | 16     | 0.5          |                                                       |
| 883.4             | stiff, brown to gray, trace gravel (CL-FILL)                  | <b>////</b>             |            | V                                                |                             | _         | 2            |        |              |                                                       |
| 1                 |                                                               |                         |            | $ /\rangle$                                      |                             |           | 2            |        |              |                                                       |
| 882.4             | •                                                             |                         | 80         | $\left\langle \cdot \cdot \right\rangle$         | 8                           | .75       | 1            | 16     | 0.5          |                                                       |
|                   |                                                               | <b>////</b> E           |            | $ \cdot $                                        |                             | В         | 1            |        |              |                                                       |
| 881.4             |                                                               | <b>////</b> E:          | 3          | X                                                |                             |           | 1 2          |        |              |                                                       |
| 880.4             |                                                               |                         | L          | V                                                |                             |           |              |        |              |                                                       |
| aau. <del>4</del> |                                                               | <i>WE</i> .             | 81         |                                                  | 9                           | 1.0<br>P  | 1            | 17     | 3.3          |                                                       |
| 879.4             |                                                               | <b>////</b> E !         | 5          | IX                                               |                             | ,         | 2            |        |              |                                                       |
|                   | Gravel lens at 5.5 feet                                       |                         |            | /                                                |                             |           | 1            |        |              |                                                       |
| 878.4             | CLAY stiff, gray, trace sand and gravel (CL)                  | <del>/////-</del>       | 3 20       | <del>(                                    </del> | 16                          | 1.2       | 2            | 39     | 15.6         | -                                                     |
|                   |                                                               |                         |            | $ \cdot $                                        |                             | В         | 2            |        |              |                                                       |
| 877.4             |                                                               |                         | 7          |                                                  |                             |           | 3            |        |              | 12" Steel Casing installe                             |
| 876.4             | TAIRVEV TRANSCERENCE FOR THE PART OF T                        | <i>###</i> E.           | 3 2        | /\                                               |                             |           |              |        |              | to 7 feet.                                            |
| 5,0.4             | CLĀYEŸ SĀND medium dense, gray (SC) UW = 120.6 pcf SG = 2.754 |                         | 20:        | 2                                                | 12                          | .3        | ST           | 25     |              |                                                       |
| 875.4             | Sand lens at 8.5 feet.                                        |                         | 9          |                                                  |                             | <u> </u>  |              |        |              | Bottom of Excavation at                               |
|                   |                                                               |                         |            |                                                  |                             |           |              |        |              | 875.3 + /-                                            |
| 874.4             | UW = 147 pcf SG = 2.802                                       | 1                       | 0 20       | 3 ,                                              | 17                          | 4.5+      | 2            | 12     | 256          | 1                                                     |
|                   | Grades with little gravel                                     | <b>////</b> .           |            | V                                                |                             | Р         | 5            |        |              |                                                       |
| 873.4             | POORLY GRADED SAND fine grained,                              | [ ]                     | 1          |                                                  | •                           |           | 14           |        |              |                                                       |
| 872.4             | medium dense, brown (CL)                                      | E <sub>1</sub>          | 2 20       | <u>/</u>                                         | 1.0                         | l bio     | -            | 10     | 104.8        |                                                       |
|                   |                                                               |                         | 204        | <b>'</b>  \ /                                    | 16                          | NP<br>4.5 | 5            | 10     | 104.8        | ]                                                     |
| 871.4             | LEAN CLAY hard, gray, trace sand and                          | 1                       | 3          | X                                                |                             | P         | 20 24        | }      |              |                                                       |
|                   | gravel (CL)                                                   |                         |            | $\backslash \backslash$                          |                             |           | ~~           | [      |              |                                                       |
| 870.4             |                                                               | <b>////</b> =1          | 4 20       | 5                                                | 18                          |           | 11           | 9      | 12.6         | 1                                                     |
| 869.4             | 66.4                                                          | ////E                   | 5          | V                                                |                             | NP        | 17           |        |              |                                                       |
|                   | GS Analysis                                                   |                         |            |                                                  |                             |           | 21           |        |              |                                                       |
| -868.4            |                                                               | 1                       | 6 20       | 6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \          | 18                          | 5.0       | 12           | 9      | 10.6         | -                                                     |
|                   |                                                               |                         |            | ]\/                                              |                             | P         | 14           |        |              |                                                       |
| 867.4             | SAND fine grained, loose to medium dense,                     | ¥1                      | 7          | IX                                               |                             |           | 15           |        |              |                                                       |
| 000 :             | brown (SP)                                                    | WE.                     |            | \ \                                              | $\sqrt{}$                   |           |              |        |              |                                                       |
| -866.4            |                                                               | ₩F                      | 8 20       | 7                                                | 16                          | 5.0       | 1            | 9      | 8.6          |                                                       |
| -865.4            | LEAN CLAY hard, gray, trace sand and                          | 1                       | 9          | V                                                |                             | P<br>NP   | 10           |        |              |                                                       |
|                   | gravel (CL) SAND fine grained, loose to medium dense,         |                         |            | $  / \rangle$                                    |                             |           | 11           |        |              |                                                       |
|                   | Onital file grained, loose to mediam dense,                   |                         |            | <u> </u>                                         | <u> </u>                    | <u>L</u>  | <u> </u>     |        | 1            |                                                       |

| Ve                        | MC ENVIRONMENTAL RISK N                          | IANAGEN          | MENT                | , t           | -ielo                   | 3 80                        | orır        | ıg ı         | .og             |                      | Page _               | <u>2</u> of | <u> </u>   |
|---------------------------|--------------------------------------------------|------------------|---------------------|---------------|-------------------------|-----------------------------|-------------|--------------|-----------------|----------------------|----------------------|-------------|------------|
|                           | 3709.001 County B                                |                  |                     |               | g No.                   |                             | G-4         | <u>4-98</u>  |                 | _ Mo                 | nitor <b>Well I</b>  | No          |            |
| Project Nan               | ne Enviro-Chem Superfund Site                    |                  |                     | Site L        | _ocati                  | ion _                       |             |              | IS 4:           | <u>21, Z</u>         | ionsville,           | Indiana     |            |
| Surface Ele               | vation 884,4 Completion Dept                     | h <u>24.0 ft</u> | bgs                 | Auge          | r Dep                   | th                          | 22          | ft b         | gs              | _ Rot                | tary Depth           | ft          | bgs        |
| Quadrangle                | Rosston Sec. T.                                  | R                |                     | Date:         | Star                    | t                           | 1/3         | 1/98         | 3               | _ Fin                | ish2/                | 5/98        | <u>.</u> - |
| UTM (or St<br>Plane) Cool | ate<br>rd. N.(X) <u>921605.7</u> E.(Y) <u>72</u> | <u>5933.4</u>    |                     | Wate<br>Durin |                         |                             | <u> 17.</u> | O ft         | bgs             | _ At                 | Completion           | <u> </u>    | ft bgs     |
| .atitude                  | 39° 57' Longitude 86°                            | 16 '             |                     |               | _                       | AM                          | DI I        | <u> </u>     |                 |                      | DE                   | RSON        | INIEI      |
|                           | ation Southern Concrete Pad Excavation A         |                  |                     |               | 3,                      | 8                           | r Li        |              |                 | <u> </u>             | Geologist            |             |            |
|                           | ipment and Method CME-75                         |                  |                     | ا ہے ا        | ype                     | Sample<br>Recovery (inches) |             | _ ا          | ŝ               | ig<br>G              | 1                    | Dave        | Ellis      |
|                           |                                                  | Graphic<br>Log   | Depth<br>(feet bgs) | Sample No.    | Sample Type             | ple<br>overy                | (tst)       | alue<br>ws/6 | sture<br>tent ( | PID Reading<br>(ppm) | Helper -<br>Helper - | Justin      | 1          |
| Elevation                 | DESCRIPTION OF MATERIALS                         |                  | Dep                 | Sam           | Sam                     | Sam                         | පි          | 2 g          | S S             | 등할                   | R                    | EMAI        | RKS        |
| =                         | brown (SP)                                       | 7                | =                   | 208           |                         | 17                          | 5.0<br>P    | 5            | 10              | 6.5                  |                      |             |            |
| -863.4                    | LEAN CLAY hard, gray, trace sand and gravel (CL) |                  | _<br>21             |               | lΥ                      |                             | '           | 10           |                 |                      | 1                    |             |            |
|                           |                                                  |                  |                     |               | $/ \setminus$           |                             |             | 15           |                 |                      |                      |             |            |
| -862.4                    |                                                  |                  | <u> </u>            | 209           | $\langle \cdot \rangle$ | 24                          | 5.0         | 1            | 10              | 14.6                 |                      |             |            |
| 861.4                     |                                                  |                  | _<br>23             |               | IV.                     |                             | P           | 12           |                 |                      |                      |             |            |
|                           |                                                  |                  | <b>= 1</b>          |               |                         |                             |             | 9            | 1               |                      | [                    |             |            |
| 860.4                     | Boring terminated at 24 feet and tremmie         | _/////           | _ 24                | -             | <u> </u>                |                             |             | -            |                 | -                    | -                    |             |            |
|                           | grouted with cement-bentonite grout.             |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      | 1                    |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      | 1                    |             |            |
|                           |                                                  |                  |                     |               |                         | i                           |             |              |                 |                      | 1                    |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             | ļ            |                 |                      |                      |             |            |
|                           |                                                  |                  | ļ                   |               |                         |                             | ļ           |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
|                           |                                                  |                  |                     |               |                         |                             |             |              |                 |                      |                      |             |            |
| L                         | VERSAR, INC.; 200 W. 22nd St                     | eet. Suite       | 250-                | Lomi          | hard                    | II RI                       | 149         | 1: 63        | 0/26            | 8-854                | 55                   |             |            |

| VC           | HC ENVIRONMENTAL RISK MA                                           | NAGE                                         | MENT                | . F        | -ielo                                        | d B         | orin           | ıg L                  | .og     |                      | Page1_ of2                                     |
|--------------|--------------------------------------------------------------------|----------------------------------------------|---------------------|------------|----------------------------------------------|-------------|----------------|-----------------------|---------|----------------------|------------------------------------------------|
|              | 3709.001 County Boo                                                |                                              |                     |            | g No.                                        |             | G-!            | 5- <u>98</u>          |         | _ Mo                 | nitor Well No.                                 |
| Project Nan  | ne Enviro-Chem Superfund Site                                      |                                              |                     | Site L     | .ocati                                       | ion _       |                | Ļ                     | JS 4:   | 21, Z                | ionsville, Indiana                             |
| Surface Ele  | vation 886.6 Completion Depth                                      | 36.0 ft                                      | t bgs               | Auge       | r Dep                                        | th          | 32             | ft b                  | gs_     | _ Ros                | tary Depth <u>ft bgs</u>                       |
| Quadrangle   | Rosston Sec. T.                                                    | _ R                                          |                     | Date:      | Star                                         | t           | 1/3            | 1/98                  | 3       | _ Fin                | ish2/5/98                                      |
| UTM (or St   |                                                                    |                                              |                     | Wate       | r Lev                                        | el:         |                |                       |         |                      |                                                |
|              | 39° 57' " Longitude 86° 1                                          |                                              |                     |            |                                              |             |                |                       |         |                      |                                                |
|              |                                                                    |                                              |                     |            | S                                            | AM          | PLI            | ES                    |         | ·                    | PERSONNEL                                      |
|              | ation Southern Concrete Pad Excavation Area                        | <u>.                                    </u> |                     |            | 9                                            | nche        |                | N Value<br>(blows/6") | _       |                      | Geologist - Steve Conway  Driller - Dave Ellis |
| Drilling Equ | ipment and Method <u>CME-75</u>                                    | ည်                                           | ر (Sg               | Sample No. | Sample Type                                  | e<br>Bry (i | <b>-</b>       | (e_)                  | %<br>(% | PID Reading<br>(ppm) | Helper - Justin                                |
|              | DECORPTION OF MATERIAL C                                           | Graphic                                      | Depth<br>(feet bgs) | ampt       | ampl                                         | amplecov    | lp (ts         | Valu                  | foist.  | E R                  | Helper -                                       |
| Elevation    | DESCRIPTION OF MATERIALS SANDY CLAY FILL very stiff to hard, brown | <i>W.M.</i>                                  |                     | 76         |                                              | 9           | 2.0            | 3                     | 13      | 0                    | REMARKS                                        |
|              | to brown and gray mottled, trace gravel,                           |                                              |                     |            | $\setminus / $                               |             | Р              | 2                     |         |                      |                                                |
| 885.6        | brick and ash (CL-FILL)                                            |                                              | F 1                 |            | Ň                                            |             |                | 2                     |         |                      |                                                |
| 884.6        |                                                                    |                                              | E 2                 |            |                                              | 4-          | 0.0            |                       | •       |                      |                                                |
|              |                                                                    |                                              | Ē                   | 77         | $\Lambda /$                                  | 17          | 3.0<br>P       | 3<br>5                | 14      | 0                    |                                                |
| 883.6        |                                                                    |                                              | <u></u> 3           |            | X                                            |             |                | 9                     |         |                      |                                                |
| E            |                                                                    |                                              | = .                 |            | $V\setminus$                                 |             |                | ' '                   |         |                      |                                                |
| 882.6        |                                                                    |                                              | <b>F</b> *          | 78         | 7                                            | 22          | 4.5            | 4<br>8                | 11      | 3.4                  |                                                |
| 881.6        |                                                                    |                                              | <u> </u>            |            | ΙX                                           |             |                | 10                    |         |                      |                                                |
| [F           |                                                                    |                                              | <b>=</b>            |            | $ / \setminus$                               |             |                | 10                    |         |                      |                                                |
| 880.6        |                                                                    |                                              | <b>=</b> 6          | 110        |                                              | 24          | 1.6            | 8                     | 11      | 205                  |                                                |
| 879.6        |                                                                    |                                              | £ 7                 |            | V                                            |             | S              | 7<br>8                |         |                      |                                                |
| [E°/3.0      | CLAY very stiff, brown and gray mottled (CL)                       |                                              | <b>E</b> '          |            | $ \Lambda $                                  |             |                | 7                     |         |                      | 12" Steel Casing installed to 7 feet.          |
| 878.6        |                                                                    |                                              | <u>}</u> 8          | 111        | \_\                                          | 24          | 3.2            | ST                    | 11      | NA                   | <u> </u>                                       |
|              | Sand lens at 8.5 feet.                                             |                                              | =                   |            |                                              |             |                |                       |         |                      |                                                |
| 877.6        | UW = 144.2 pcf SG = 2.80                                           |                                              | <b>₹</b> 9          |            |                                              |             |                |                       |         |                      |                                                |
| 876.6        |                                                                    |                                              | £ 10                | )          |                                              |             |                |                       |         |                      |                                                |
|              |                                                                    |                                              | £ .                 | 1112       | N/                                           | 16          | 3.1<br>B       | 4<br>5                | 11      | 0.6                  | Bottom of Excavation at 875.8 +/-              |
| 875.6        |                                                                    |                                              | <del>-</del> 11     |            | X                                            |             | <br>           | 7                     |         |                      | 875.8 47-                                      |
| 874.6        |                                                                    |                                              | £.,                 |            | $V\setminus$                                 |             |                |                       |         |                      |                                                |
| E "4.0       | SAND CLAY very stiff, gray (CL)                                    |                                              | 12<br>E             | 113        | \ /                                          | 19          | 3.5<br>P       | 5<br>5                | 10      | 0.6                  |                                                |
| 873.6        | Fine GRAVEL lenses at 13.1 and 14 feet.                            |                                              | <u>=</u> 13         | 3          | ΙX                                           |             |                | 5                     |         |                      |                                                |
| l E          | THE STATE ISINGS BY 10.1 and 14 feet.                              |                                              | E                   |            | $/ \setminus$                                | 3           |                | 7                     |         |                      |                                                |
| 872.6        | SILTY SAND loose, gray, trace gravel (SM)                          |                                              | 14                  | 114        | 1                                            | 16          | NP             | 4                     | 15      | 0.0                  | -                                              |
| 871.6        |                                                                    |                                              | <u> -</u> 15        | 5          | V                                            |             |                | 4                     |         | 1                    |                                                |
| E            | Gravel layer at 15.5 feet.                                         |                                              | E                   |            | $ / \setminus$                               |             |                | 3                     |         |                      |                                                |
| 870.6        | •                                                                  |                                              | - 16                | 115        | (-)                                          | 12          | <del> </del> - | 4                     | 8       | 0.0                  | -                                              |
| E            |                                                                    |                                              | E.                  | ,          | IV                                           |             | 2.5            | 4 7                   |         |                      |                                                |
| 869.6        | SANDY CLAY medium stiff, gray (CL) Sand lens at 17.3 feet          |                                              | 17                  | <b>'</b>   | $ \Lambda $                                  |             | P              | 13                    |         |                      |                                                |
| 868.6        | POORLY GRADED SAND loose to medium                                 |                                              | £ 18                | 116        | <u>{                                    </u> | 15          | NP             | 1                     | 10      | 1.3                  |                                                |
| 1 E          | dense, medium to coarse grained, gray,                             |                                              | E                   |            |                                              |             |                | 3                     |         | ".3                  |                                                |
| 867.6        | trace gravel (SP)                                                  |                                              | <u>-</u> 19         | 9          | IX                                           |             |                | 6                     | -       |                      |                                                |
| E            |                                                                    |                                              | E_                  |            | V                                            |             | L              | <u>L</u>              | <u></u> |                      |                                                |

| VC             | HC ENVIRONMENTAL RISK MA                                     | NAGEME                  | NT         | r          | ·ieic               | 3 B                         | orin     | ıg L    | .og            |                      | Page2         | of <u>2</u>                |
|----------------|--------------------------------------------------------------|-------------------------|------------|------------|---------------------|-----------------------------|----------|---------|----------------|----------------------|---------------|----------------------------|
|                | 3709.001 County Boo                                          |                         |            |            | g No.               |                             | G-!      | 5-98    |                | _ Mo                 | nitor Well No | •                          |
| Project Nam    | ne Enviro-Chem Superfund Site                                |                         | _          | Site L     | ocati               | on .                        |          | Ų       | S 4:           | 21, Z                | ionsville, In | diana                      |
| Surface Ele    | vation 886.6 Completion Depth                                | 36.0 ft bo              | <u> 15</u> | Auge       | r Dep               | th                          | 32       | ft b    | gs             | _ Rot                | tary Depth _  | ft bgs                     |
| Quadrangle     | Rosston Sec T                                                | R                       |            | Date:      | Start               | t                           | _1/3     | 1/98    | 3              | _ Fin                | ish2/5        | /98                        |
| UTM (or St     | ate<br>rd. N.(X) 921819.7 E.(Y) 725                          |                         |            | Water      | r Levi              | el:                         |          |         |                |                      |               |                            |
|                | 39° 57' Longitude 86° 1                                      |                         |            |            |                     |                             |          |         |                |                      |               |                            |
|                |                                                              |                         |            | <u> </u>   | <u>S</u> ,          | AM                          | PLI      | ΞS      |                |                      |               | SONNEL                     |
|                | Southern Concrete Pad Excavation Are                         | <u>a</u>                | _          |            |                     | Sample<br>Recovery (inches) |          |         | _              |                      |               | Steve Conway<br>Dave Ellis |
| Drilling Equ   | ipment and Method <u>CME-75</u>                              | ۽ ا                     | ŝ          | Sample No. | Sample Type         | ( <u>;</u>                  | £        | (.9/    | are<br>at (%   | PID Reading<br>(ppm) | Helper -      | Justin                     |
|                | 5500007101105                                                | Graphic<br>Log<br>Depth | (feet bgs) | ampt       | d E                 | ampl<br>ecov                | Op (tsf) | Valu    | loist.<br>onte | D Re                 | Helper -      |                            |
| Elevation      | DESCRIPTION OF MATERIALS POORLY GRADED SAND medium to coarse |                         | =          | 117        | \ \                 | 12                          | NP       | 3       | ≥ ບ<br>15      | 0.0                  | KE            | MARKS                      |
|                | grained, medium dense, gray, trace gravel                    | I E                     |            |            | \ /                 | -                           |          | 5       |                |                      |               |                            |
| 865.6          | (SP)                                                         |                         | 21         |            | Χl                  |                             |          | 7       |                |                      |               |                            |
| _<br>864.6     |                                                              | <b>E</b>                | 22         |            | $/ \$               |                             |          |         |                |                      |               |                            |
| - 804.0        |                                                              | <b>F</b>                | 22         | 118        | $\setminus$         | 13                          | NP       | 3<br>5  |                | 0.0                  |               |                            |
| 863.6          |                                                              |                         | 23         |            | χl                  |                             |          | 8       |                |                      |               |                            |
| _              |                                                              | I E                     |            |            | $/ \setminus$       |                             |          | 9       |                |                      |               |                            |
| 862.6          |                                                              |                         | 24         | 119        | ( )                 | 15                          | NP       | 3       |                | 0.0                  | 1             |                            |
| -<br><br>861.6 |                                                              | E                       | 25         |            | V                   |                             |          | 7       |                |                      |               |                            |
| - 801.8        |                                                              | F                       | 25         |            | $\Lambda$           |                             |          | 11      |                |                      |               |                            |
| 860.6          |                                                              | I E                     | 26         | 120        | $\langle - \rangle$ | 16                          | NP       | 6       |                | 0.0                  | -             |                            |
| _              |                                                              | F                       |            | 120        | $\setminus /$       | ,,,                         | INF      | 7       |                | 0.0                  |               |                            |
| 859.6          |                                                              | F                       | 27         |            | X                   |                             |          | 8<br>13 | ĺ              |                      |               |                            |
| 858.6          |                                                              | <b>F</b>                | 20         |            | $/\setminus$        |                             |          |         |                |                      |               |                            |
| 858.6<br>      |                                                              | F                       | 20         | 121        |                     | 13                          | NP       | 3<br>6  |                | 0.0                  |               |                            |
| <br>857.6      |                                                              | <b>K</b> E              | 29         |            | X                   |                             |          | 9       |                |                      |               |                            |
| Ξ Ι            |                                                              | F                       |            |            | $/\backslash$       |                             |          | 10      |                |                      |               |                            |
| 856.6          |                                                              |                         | 30         | 122        | ( )                 | 16                          | NP       | 7       | <del> </del>   | 0.0                  | 1             |                            |
| 855.6          |                                                              | F                       | 31         |            | V                   |                             |          | 9 7     |                |                      |               |                            |
|                |                                                              | E                       | 31         |            | $ \Lambda $         |                             |          | 12      |                |                      |               |                            |
| 854.6          |                                                              | N/E                     | 32         | 123        | $\langle - \rangle$ | 15                          | NP       | 6       |                | 0.0                  | 1             |                            |
| <u> </u>       |                                                              | E                       |            | 1          | $\backslash /$      | .                           | "        | 8       |                | 3.5                  |               |                            |
| 853.6<br>      |                                                              | E                       | 33         |            | X                   |                             |          | 13      |                |                      |               |                            |
| <br>852.6      |                                                              | <b>XE</b>               | 34         |            | / \                 |                             |          |         |                |                      |               |                            |
|                |                                                              | E                       | <b>5</b> 7 | 124        | N /                 | 24                          | NP       | 3       |                | 0.0                  |               |                            |
| 851.6          |                                                              |                         | 35         |            | X                   |                             |          | 6       |                |                      |               |                            |
|                |                                                              | E                       |            |            | $V \setminus$       |                             |          | 9       | -              |                      | į             |                            |
| — 850.6        | Boring terminated at 36 feet and tremmie                     |                         | 36         |            |                     |                             |          |         |                |                      | 1             |                            |
|                | grouted with cement-bentonite grout.                         |                         |            |            |                     |                             | 1        |         |                |                      |               |                            |
|                |                                                              |                         |            |            |                     |                             |          |         |                |                      |               |                            |
|                |                                                              |                         |            |            |                     |                             |          |         |                |                      |               |                            |
|                |                                                              |                         |            |            |                     |                             |          |         |                |                      |               |                            |
|                |                                                              |                         |            |            |                     |                             |          |         |                |                      |               |                            |
|                |                                                              | 1 1                     |            |            |                     |                             |          |         |                |                      |               |                            |

|                  | NO ENVIRONMENTAL RISK                                  | MANAGEMEN               | T          |                     |                             | ••••      | .9 .          | - • 9 |                      | Page1 of2_                                     |
|------------------|--------------------------------------------------------|-------------------------|------------|---------------------|-----------------------------|-----------|---------------|-------|----------------------|------------------------------------------------|
|                  | 3709.001 County                                        |                         |            | ıg No.              |                             | <u>G-</u> | 6-98          |       | _ Mo                 | nitor Well No. <u>MW-G6</u>                    |
| Project Nan      | ne Enviro-Chem Superfund Si                            | e                       | Site       | Locati              | ion .                       |           |               | JS 4: | 21, Z                | ionsville, Indiana                             |
| Surface Ele      | vation 883.9 Completion De                             | pth <u>27.0 ft bgs</u>  | Auge       | r Dep               | ith _                       | 25        | ft b          | gs    | _ Rot                | tary Depth ft bgs                              |
| Quadrangle       |                                                        | R                       | Date       | : Stan              | t                           | 1/2       | 9/9           | 3     | _ Fini               | ish <u>2/4/98</u>                              |
| UTM (or Sta      |                                                        |                         | Wate       | r Lev               | el:                         |           |               |       |                      | Completion <u>▼ ft bgs</u>                     |
|                  |                                                        |                         |            |                     |                             |           |               |       |                      |                                                |
|                  | 39° 57' Longitude 86°                                  |                         | <u> </u>   | _                   | AM                          |           | ES_           | r     |                      | PERSONNEL                                      |
| Boring Loca      | ation Southern Concrete Pad Excavation                 | Area                    | -          |                     | ches                        |           |               |       |                      | Geologist - Steve Conward Driller - Dave Ellis |
| Drilling Equ     | ipment and Method <u>CME-75</u>                        | <u>.</u> .              | g g        | Sample Type         | Sample<br>Recovery (inches) | _         | [6]           | 98    | PID Reading<br>(ppm) | Helper - Justin                                |
|                  |                                                        | Graphic<br>Log<br>Depth | Sample No. | elqn.               | mple                        | (tsf      | Value<br>ows/ | nten  | 3 %<br>E             | Helper -                                       |
| Elevation        |                                                        |                         | S S        | Sa                  | S &                         | _<br>     | zΘ            | Σိပိ  | <u>z</u> <u>s</u>    | REMARKS                                        |
| <u> </u>         | 7" CONCRETE above limestone subbase.                   | 4.4.1                   |            |                     |                             |           |               |       |                      |                                                |
| 882.9            |                                                        |                         | 1 67       | Ļ.,                 | 6                           |           | -             | 15    |                      |                                                |
| -<br>-           |                                                        | 12 A E                  | "          | $\backslash /$      |                             |           | 4             |       |                      |                                                |
| 881.9            | SILTY CLAY FILL gray and brown, trace                  |                         | 2          | X                   |                             |           | 2             |       |                      |                                                |
| <u>:</u>         | sand and gravel (CL-ML FILL)                           |                         |            | $/ \setminus$       |                             |           | -             |       |                      |                                                |
| -880.9<br>-      | LEAN CLAY with Sand stiff to very stiff,               |                         | 3 68       | ( )                 | 16                          | -         | 5             | 11    | 175                  |                                                |
| -<br>-<br>-879.9 | brown to brown and gray mottled, trace gravel (CL)     |                         | .          | V                   |                             |           | 9             |       |                      |                                                |
| 879.9<br>-       | 9.210. (02,                                            |                         | •          | lΛ                  |                             |           | 12            |       |                      |                                                |
| 878.9            | Sand lenses at 4.9 and 5.6 feet                        |                         | 5          | $\langle - \rangle$ |                             |           |               |       |                      |                                                |
| -                |                                                        |                         | 69         | N/                  | 20                          | 2.4<br>S  | 5             | 12    | -                    |                                                |
| -<br>877.9       |                                                        |                         | 5          | ΙX                  |                             | _         | 7             |       |                      |                                                |
| -                |                                                        |                         |            | $ / \rangle$        |                             |           | 9             |       |                      |                                                |
| -<br>876.9       |                                                        |                         | 7 160      | (-)                 | 15                          | 2.6       | 3             | 13    | 11.0                 | 12" Steel Casing installed                     |
|                  |                                                        |                         |            | $  \setminus /$     |                             | В         | 4 5           |       |                      | to 7 feet.                                     |
| 875.9            |                                                        |                         | В          | ľ                   |                             |           | 7             |       |                      |                                                |
| _<br>874.9       |                                                        |                         | 9          | <u> </u>            |                             |           |               |       |                      | Bottom of Excavation at 875.2+/-               |
| 6/4.3<br>        | LEAN CLAY very stiff, gray, trace sand and gravel (CL) |                         | 161        |                     | 18                          | 3.0<br>B  | 4             | 9     | 1.0                  |                                                |
| _<br>873.9       | graver (CL)                                            |                         | 0          | ΙV                  |                             |           | 8             |       |                      |                                                |
| =                |                                                        |                         |            | $ /\rangle$         |                             |           | 8             |       |                      |                                                |
| -<br><br>872.9   |                                                        | <i>₩</i>                | 1 162      |                     | 24                          | 1.8       | ST            | 11    | NA                   | -                                              |
| -                | 104-1427-400-007                                       | <i>/////</i> E          |            |                     | - '                         |           | -             |       |                      |                                                |
| 871.9            | UW = 143.7 pcf SG = 2.67                               |                         | 2          |                     |                             |           |               |       |                      |                                                |
| =                | Grades with interbedded SAND lenses.                   | <i>₩</i> .              |            |                     | · '                         |           |               |       |                      |                                                |
| 870.9<br>        |                                                        |                         | 163        | 1                   | 15                          | 1.7       | 2             | 12    | 0.0                  | 1                                              |
| -<br>869.9       |                                                        |                         | 4          | IV.                 |                             |           | 3             |       |                      |                                                |
| _                |                                                        |                         |            |                     |                             | NP        | 5             |       |                      |                                                |
| 868.9            |                                                        | <b>////</b> =1          | 5 164      | <u> </u>            | 16                          | 1.3       | 2             | 12    | 0.0                  | 4                                              |
| =                | Sand lens at 15.3 feet.                                |                         |            | $] \setminus /$     |                             |           | 3             |       |                      |                                                |
| 867.9            |                                                        |                         | 6          | X                   |                             |           | 5             |       |                      |                                                |
|                  |                                                        | <b>////</b> E.          | ا ر        | $V \setminus$       |                             |           |               |       |                      |                                                |
| 866.9<br>        |                                                        |                         | 165        | 1                   | 18                          | 1.3       |               | -     | 0.0                  | ]                                              |
| _<br>865.9       |                                                        | <i>/////</i> E.         | 8          | V                   |                             |           | 3 2           |       |                      |                                                |
|                  |                                                        |                         |            | $  \wedge $         |                             |           | 6             |       |                      |                                                |
|                  |                                                        |                         |            |                     |                             |           |               |       | 1                    | i .                                            |
| <br>864.9        | POORLY GRADED SAND medium to coars                     |                         | 9 166      |                     | 14                          | NP        | 3             | +-    | 0.0                  | 1                                              |

| plate ID:EEPA\gint project ID:\Versar project no:\\vun date:3/10/98 |                                                                               |             |             |                  |                                                  |                                                    | <u> </u>                       | <u> </u>                                                             | Ñ                 |                            | <u>ק</u>           |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------|-------------|------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------|----------------------------------------------------------------------|-------------------|----------------------------|--------------------|
|                                                                     | - 856.9<br>                                                                   |             | 859.9       | -861.9<br>-860.9 | -862.9                                           | Drilling Equ                                       | Boring Loc                     | Quadrangle<br>UTM (or St<br>Plane) Coo<br>Latitude                   | Surface Elevation | Project Name               | Project No.        |
|                                                                     | Boring ten<br>grouted w                                                       |             |             |                  | POORLY of grained, m (SP)                        | Drilling Equipment and Method  Elevation DESCRIPTI | Sou                            | Quadrangle Rosston UTM (or State Plane) Coord. N.(X) Latitude 39° 57 | vation            |                            |                    |
|                                                                     | Boring terminated at 27 feet and trem<br>grouted with cement-bentonite grout. |             |             |                  | POORLY GRADED SAND grained, medium dense, g (SP) |                                                    | nern Concr                     | 921433.4                                                             | 883.9             | Enviro-                    | 3709.001           |
|                                                                     | 27 feet and tremmie<br>bentonite grout.                                       |             |             |                  | ND medium to coars<br>e, gray, trace gravel      | 1 11 1-                                            | e                              | Sec                                                                  | ි<br>             | Enviro-Chem Superfund Site | 9.001 County Boone |
|                                                                     | tremmie<br>rout.                                                              |             |             |                  | to coarse<br>ce gravel                           | MATERIAL                                           | cavation A                     | T                                                                    | Completion Depth  | erfund Site                | <b>Y</b>           |
|                                                                     |                                                                               |             |             |                  |                                                  | Graphic<br>Log                                     | vrea                           | R<br>25907.8                                                         | 27.0              |                            | Boone              |
|                                                                     | 27                                                                            | 26 26       |             |                  |                                                  | Depth<br>(feet bgs)                                |                                | .                                                                    | ft bgs            |                            |                    |
|                                                                     |                                                                               | 169         |             | 8                | 167                                              | Sample No.                                         |                                | Date: Start Water Level: During Drilling                             | Auger Depth       | Site Location              | Boring No.         |
|                                                                     |                                                                               | $\geq \leq$ | $\geq \leq$ |                  | $\times$                                         | Sample Type                                        | \¢                             | Start<br>Leve<br>Drilli                                              | Dept              | ocatio                     | Z                  |
|                                                                     |                                                                               | 13          |             | <del></del>      | 7                                                | Sample<br>Recovery (inc                            | hes)                           | <br> 42<br>                                                          |                   | Š                          |                    |
|                                                                     |                                                                               | 푹           |             | <del> </del>     | ₹                                                | Op (tsf)                                           | <b>`</b>                       | 1/29<br>4.0                                                          | 25 1              |                            | G-6-98             |
|                                                                     |                                                                               | 19 13 1 6   | 14 1 8 7    | 14 7             | ω <b>α</b> α                                     | (blows/6")<br>Moisture                             | \c                             | 1/29/98<br>¥ 4.0 ft bgs                                              | 25 ft bgs         | US                         | 98                 |
|                                                                     |                                                                               |             | <del></del> |                  |                                                  | Content (%)                                        | _                              | S                                                                    | "                 | 421                        |                    |
|                                                                     |                                                                               | 0.0         |             | 3                | 00                                               | PID Reading<br>(ppm)                               |                                | Finish<br>At Cor                                                     | Rot               | r :                        | <u>X</u>           |
|                                                                     |                                                                               |             |             |                  |                                                  | Helper -<br>Helper -                               | PER<br>Geologist -             | 불                                                                    | Rotary Depth      | Zionsville, Indiana        | Monitor Well No.   |
|                                                                     |                                                                               |             |             |                  |                                                  | Dave Ellis Justin REMARKS                          | PERSONNEL  gist - Steve Conway | 2/4/98<br>ion <b>X</b> f                                             | ft bgs            | (E. 1                      | MW-GA              |
|                                                                     |                                                                               |             |             |                  |                                                  |                                                    | š Z                            | ft bgs                                                               | SEC               |                            | <b>&lt;</b>        |

PROJECT TITLE ENVIRO-CHEM WELL NO. G-6 BORING NO. G-6-98 DATE STARTED 1-29-98 LOCATION ZIONSVILLE, IN COMPLETED 1-29-98 DRILLING CONTRACTOR PHILIP ENVIRONMENTAL DRILLER DAVE ELLIS RIG No. CME-75 METHOD HSA FLUIDS NONE GEOLOGIST STEVE CONWAY, HANDEX COMMENTS N 921,733.40, E 725,907.76



WELL CONSTRUCTION NOTES:

- 1. TYPE RISER ABOVE W.T. 2" PVC
- 2. TYPE RISER BELOW W.T. 2" PVC
- 3. TYPE OF SCREEN 0.010" CONT. SLOT PVC
- 3. TYPE OF PROTECTIVE CASING STEEL
- 4. ELEVATION OF WATER 878.35 FT MSL.
- 5. WATER LEVEL READING ON 8.95' FT BELOW TOC FEB 24, 1998

RISER STACK MONITORING WELL INSTALLATION DIAGRAM



|               | MC ENVIRONMENTAL RISK MA                                                      | NAGE           | MENT                | •          |                               |             |          | .9 -   | 3              |                   | Page _ 1 _ of _ 2                               |
|---------------|-------------------------------------------------------------------------------|----------------|---------------------|------------|-------------------------------|-------------|----------|--------|----------------|-------------------|-------------------------------------------------|
|               | 3709.001 CountyBoo                                                            |                |                     |            | g No.                         |             | G-       | 7-98   |                | _ Mo              | nitor Well No.                                  |
| Project Nam   | ne Enviro-Chem Superfund Site                                                 |                |                     | Site L     | .ocati                        | on .        |          |        | <u> 15 4:</u>  | 21, Z             | ionsville, Indiana                              |
| Surface Ele   | vation 883.8 Completion Depth                                                 | 31.0 ft        | bgs                 | Auge       | r Dep                         | th          | 29       | ft b   | gs             | _ Rot             | tary Depth <u>ft bgs</u>                        |
| Quadrangle    | Rosston Sec T                                                                 | R              |                     | Date:      | Start                         | ·           | 1/3      | 0/98   | 3              | _ Fin             | ish2/3/98                                       |
| UTM (or Sta   | ate<br>d. N.(X) 921668.8 E.(Y) 725                                            |                |                     | Wate       | r Leve                        | el:         |          |        |                |                   | Completion ▼ ft bgs                             |
|               | 39° 57' Longitude 86° 1                                                       |                |                     |            | -                             |             |          |        |                |                   |                                                 |
|               | ation Southern Concrete Pad Excavation Are                                    |                |                     |            | S                             | MA          | PLI      | ES     |                |                   | PERSONNEL                                       |
| -             |                                                                               | <u>a</u>       |                     |            |                               | nche.       |          |        | _              | PID Reading (ppm) | Geologist - Steve Conwa<br>Driller - Dave Ellis |
| Drilling Equi | ipment and Method <u>CME-75</u>                                               | Σįς            | لا<br>(sg           | Sample No. | Sample Type                   | :<br>5      | æ        | .9/    | 8 ±            | adin              | Helper - Justin                                 |
|               | DECODIDETION OF MATERIAL O                                                    | Graphic<br>Log | Depth<br>(feet bgs) | ampl       | ampl                          | amp<br>ecov | ıp (ts   | Val.   | loist.<br>onte | ID Re             | Helper -                                        |
| Elevation     | DESCRIPTION OF MATERIALS  10" CONCRETE floor slab over crushed                | 44             |                     | S          | v)                            | S &         | 0        | ZE     | ≥ 0            | 4 3               | REMARKS                                         |
| Ε             | limestone subbase.                                                            | 12.0           | ⊢                   |            |                               |             |          |        |                |                   |                                                 |
| 882.8         |                                                                               | 4.4.           | E 1                 | 70         |                               | 4           | NA       | l      | -              | 185               |                                                 |
| =<br>         | •                                                                             | 4.4            | 2                   |            | V                             |             |          | 3      |                |                   |                                                 |
| =             |                                                                               | 44             | E                   |            | $ \Lambda $                   |             |          | 9      |                |                   |                                                 |
| 880.8         | LEAN CLAY FILL very stiff, brown, trace                                       | 10.0           | _ з                 | 71         | $\langle - \rangle$           | 18          | 2.4      | 5      | 16             | 81                |                                                 |
| E             | gravel (CL)                                                                   |                | E                   |            | $\setminus / \mid$            |             | В        | 6      |                |                   |                                                 |
| 879.8         | SAND FILL medium to coarse grained,                                           | <i>Y</i>       | - 4                 |            | X                             |             |          | 7<br>8 |                |                   |                                                 |
| 878.8         | medium dense, brown (SP-FILL)                                                 |                | 5                   |            | $\langle \ \ \rangle$         |             |          |        |                |                   |                                                 |
| E ", ", [     | LEAN CLAY with Sand very stiff, gray, trace gravel (CL)                       |                | E,                  | 72         | $\setminus$                   | 16          | 2.1<br>S | 3<br>7 | 14             | 162               |                                                 |
| 877.8         | Orange staining at 5.0 feet                                                   |                | 6                   |            | X                             |             |          | 7      |                |                   |                                                 |
| E             |                                                                               |                | E                   |            | $/ \setminus$                 |             |          | 11     |                |                   |                                                 |
| 876.8         |                                                                               |                | 7                   | 138        |                               | 18          | 3.3      | 1      | 11             | 78                | 12" Steel Casing installed                      |
| 875.8         |                                                                               |                | -<br>- 8            |            | $\bigvee$                     |             | В        | 5<br>6 |                |                   | to 7 feet.                                      |
| E 373.3       |                                                                               |                | E                   |            |                               |             |          | 8      |                |                   |                                                 |
| 874.8         |                                                                               |                | 9                   | 139        | \                             | 24          | 4.0      | ST     | 11             | NA                |                                                 |
| E             | UW = 143.7 pcf SG = 2.69                                                      |                | Ē                   |            |                               |             |          |        | ' '            |                   | Bottom of Excavation at                         |
| 873.8         |                                                                               |                | 10                  | <u>'</u>   |                               |             |          |        |                |                   | 874.2 +/-                                       |
| 872.8         |                                                                               |                | <u> </u>            |            |                               |             |          |        |                |                   |                                                 |
| E "           |                                                                               |                | ŧ ''                | 140        | N /                           | 20          | 2.5      | 3      | 9              | 1.3               |                                                 |
| 871.8         |                                                                               |                | 12                  | 2          | X                             |             |          | 4      |                |                   |                                                 |
| E [           |                                                                               |                | 1                   |            | //                            |             |          | 6      |                |                   |                                                 |
| 870.8         | POORLY GRADED SAND fine grained, loose, gray (SP)                             |                | <u> </u> 13         | 141        | 7                             | 17          | NP       | 4      | 10             | 1.3               | -                                               |
| 869.8         |                                                                               |                | E 14                |            | IV                            |             |          | 4 4    |                |                   |                                                 |
| E             |                                                                               |                | E                   |            | $ /\rangle$                   |             |          | 7      |                |                   |                                                 |
| 868.8         | LEAN CLAY with interbedded sand lenses,                                       |                | 15                  | 142        | $\left\langle -\right\rangle$ | 15          | NA       | 2      | 10             | 0.0               | -                                               |
|               | very stiff to hard, gray (CL)                                                 |                | =                   |            | $  \setminus /$               |             |          | 4 8    |                |                   |                                                 |
| 867.8         |                                                                               |                | 16                  | 9          | $ \Lambda $                   |             |          | 6      |                |                   |                                                 |
| 866.8         |                                                                               |                | <b>走</b> 17         | ,          | <u> </u>                      | 1-          | 1 -      | 1      | -              | 100               | ]                                               |
| F             |                                                                               |                | E                   | 143        | $\backslash /$                | 15          | 4.5<br>P | 7      | 12             | 0.0               |                                                 |
| 865.8         | DOODLY OD 1 DE 2                                                              |                | ¥18                 | 3          | X                             |             |          | 8      |                |                   |                                                 |
| E             | POORLY GRADED SAND medium to coarse grained, medium dense, gray, trace gravel |                | E                   |            | //                            |             |          | 8      |                |                   |                                                 |
| 864.8         | (SP)                                                                          |                | - 19<br> -          | 144        | $\nabla$                      | 12          | NP       | 4 5    | 11             | 0.0               | 1                                               |
|               |                                                                               |                | •                   |            |                               |             |          |        |                |                   | i .                                             |

| $\lceil$                                                               | Ve          | Sal MC ENVIRONMENTAL RISK MAI                                                 | NAGEMEI                 | NT         | F          | ielo                          | B                           | orin     | g L                   | .og             |                      | Page                 | 2 of 2       | <u> </u> |
|------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------|-------------------------|------------|------------|-------------------------------|-----------------------------|----------|-----------------------|-----------------|----------------------|----------------------|--------------|----------|
|                                                                        |             | 3709.001 County Boo                                                           |                         |            |            | No.                           |                             | G-7      | 7-9 <u>8</u>          |                 | _ Mo                 | nitor Well N         | o            | _        |
| 1                                                                      | Project Nam | ne Enviro-Chem Superfund Site                                                 |                         | _          | Site L     | ocati                         | on _                        |          | <u> </u>              | S 4:            | 21, Z                | ionsville, l         | ndiana       | _        |
|                                                                        | Surface Ele | vation 883.8 Completion Depth 3                                               | 31.0 ft bg              | <u> </u>   | Augei      | Dept                          | th                          | 29       | ft bo                 | as_             | _ Rot                | ary Depth _          | ft bgs       | _        |
|                                                                        | Quadrangle  | Rosston Sec. T.                                                               | R                       | _          | Date:      | Start                         | :                           | 1/3      | 0/98                  | 3               | Fini                 | ish 2/3              | 3/98         | _        |
|                                                                        | UTM (or Sta | ate<br>d. N.(X) <u>921668.8</u> E.(Y) <u>725</u> 9                            |                         |            | Water      | r Leve                        | el:                         |          |                       |                 |                      |                      |              | _        |
|                                                                        | Latitude    | 39° 57' " Longitude 86° 10                                                    | 6 <u> </u>              | •          | r—         | <u> </u>                      | Λ R A                       | PLE      |                       |                 |                      | DEC                  | RSONNEL      | ٦        |
|                                                                        |             | ition Southern Concrete Pad Excavation Area                                   |                         |            | <u> </u>   |                               | <u>§</u>                    |          | -3                    |                 |                      |                      | Steve Conway | 1        |
| Ì                                                                      |             | ipment and Method CME-75                                                      |                         | _          | 6          | ød.                           | Sample<br>Recovery (inches) |          | ٦                     | <b>%</b>        | <u>ق</u>             |                      | Dave Ellis   | Ì        |
| Ì                                                                      |             |                                                                               | Graphic<br>Log<br>Depth | (feet bgs) | Sample No. | Sample Type                   | ole y                       | Op (tsf) | N Value<br>(blows/6") | sture<br>tent ( | PID Reading<br>(ppm) | Helper -<br>Helper - | Justin       | Ì        |
|                                                                        | Elevation   | DESCRIPTION OF MATERIALS                                                      | 2 2 g                   | 166        | Sam        | Sam                           | Rec                         | ð        | 2 g                   | Con             | 면 g                  | RE                   | MARKS        | 1        |
|                                                                        | E           | POORLY GRADED SAND medium to coarse grained, medium dense, gray, trace gravel | E                       |            |            | $\bigvee$                     |                             |          | 8 5                   |                 |                      |                      |              | 1        |
|                                                                        | 862.8       | (CL)                                                                          | <b> </b>                | 21         | 145        | $(\cdot)$                     | 13                          | NP       | 10                    | 11              | 0.0                  |                      |              |          |
|                                                                        | E           |                                                                               | XE.                     | 22         |            | $\bigvee$                     |                             |          | 12<br>12              |                 |                      |                      |              |          |
|                                                                        | 861.8       |                                                                               | ₩E'                     | 22         |            | $\Lambda$                     |                             |          | 9                     |                 |                      |                      |              |          |
|                                                                        | 860.8       | LEAN CLAY with Sand hard, gray, trace                                         |                         | 23         | 146        | $\left\langle -\right\rangle$ | 14                          | 7.7      | 6                     | 9               | 0.0                  |                      |              |          |
|                                                                        | E           | gravel (CL)                                                                   |                         | ~ 4        |            | $\bigvee$                     |                             | В        | 10<br>11              |                 |                      |                      |              |          |
|                                                                        | 859.8<br>   |                                                                               |                         | 24         |            | $\Lambda$                     |                             |          | 15                    |                 |                      |                      |              |          |
|                                                                        | 858.8       |                                                                               |                         | 25         | 147        | $\left\langle -\right\rangle$ | 17                          | 7.3      | 5                     |                 | 0.0                  |                      |              |          |
| ١                                                                      | E           |                                                                               |                         |            | ]          | $\bigvee$                     | .,                          | В        | 11                    |                 | 0.0                  |                      |              | 1        |
|                                                                        | 857.8<br>   |                                                                               |                         | 26         |            | ΛI                            |                             |          | 16<br>19              |                 |                      |                      |              | 1        |
| 1                                                                      | 856.8       |                                                                               |                         | 27         | 148        | (-)                           | 18                          | 10       | 15                    |                 | 0.0                  |                      |              |          |
| -                                                                      |             |                                                                               | <i>/////E</i>           |            |            | $\setminus / \mid$            |                             | S        | 16                    |                 |                      |                      |              |          |
|                                                                        | —855.8<br>— |                                                                               |                         | 28         |            | ΛI                            |                             |          | 22                    |                 |                      |                      |              |          |
|                                                                        | 854.8       | Sand lenses at 29 and 29.5 feet.                                              |                         | 29         | 149        | (-)                           | 18                          | 5.9      | Q,                    |                 | 0.0                  | -                    |              |          |
|                                                                        | E           |                                                                               | /////E                  |            |            | $\backslash / \mid$           |                             | 0.0      | 13                    |                 | 0.0                  |                      |              |          |
|                                                                        | 853.8       |                                                                               |                         | 30         |            | ΛI                            |                             |          | 20<br>28              |                 |                      |                      |              |          |
|                                                                        | 852.8       | Boring terminated at 31 feet and tremmie                                      |                         | 31         | <b></b>    | $\angle$                      |                             |          |                       |                 |                      | -                    |              |          |
| Ì                                                                      |             | grouted with cement-bentonite grout.                                          | ] ]                     |            |            |                               |                             |          |                       |                 |                      | }                    |              |          |
| ١                                                                      |             |                                                                               |                         |            |            |                               |                             |          |                       |                 |                      |                      |              |          |
| 1                                                                      |             |                                                                               |                         |            |            |                               | •                           |          |                       |                 |                      |                      |              |          |
| 1                                                                      |             |                                                                               |                         |            |            |                               |                             |          |                       | l               |                      |                      |              |          |
| 000                                                                    | į į         |                                                                               |                         |            |            |                               |                             |          |                       |                 | i                    |                      |              |          |
| dete:3                                                                 |             |                                                                               |                         |            |            |                               |                             |          |                       |                 |                      |                      |              |          |
| D://c                                                                  |             |                                                                               |                         |            |            |                               |                             |          |                       |                 |                      |                      |              |          |
| project                                                                |             |                                                                               |                         |            |            |                               |                             |          |                       |                 |                      |                      |              |          |
| /Versa/                                                                | 1 1         |                                                                               |                         |            |            |                               |                             |          |                       |                 |                      |                      |              |          |
| implate ID:ILEPA\gint project ID:\Versar project no:\\run date:3/10/98 |             |                                                                               |                         |            |            |                               |                             |          |                       | !<br> <br>      |                      |                      |              |          |
| Dut bu                                                                 |             |                                                                               |                         |            |            |                               |                             | l        | İ                     |                 |                      |                      |              |          |
| SI EPA                                                                 |             |                                                                               |                         |            |            |                               |                             |          |                       |                 |                      |                      |              |          |
| amplate                                                                | i i         |                                                                               |                         |            |            |                               |                             |          |                       |                 |                      |                      |              |          |

|                  | MC ENVIRONMENTAL RISK MA                                            | NAGEMENT                | г <b>і</b> | -1 <del>0</del> 10                               | ים ג                        | OFIF      | ıg ı                  | .og       |                   | Page1 of2_                                      |
|------------------|---------------------------------------------------------------------|-------------------------|------------|--------------------------------------------------|-----------------------------|-----------|-----------------------|-----------|-------------------|-------------------------------------------------|
|                  | 3709.001                                                            |                         |            | g No.                                            |                             | G-8       | <u>3-98</u>           |           | _ <b>M</b> o      | nitor Well No.                                  |
| roject Nan       | ne Enviro-Chem Superfund Site                                       |                         | Site I     | Locati                                           | on _                        |           |                       | JS 4      | <u>21, Z</u>      | ionsville, Indiana                              |
| urface Ele       | vation 884.6 Completion Depth                                       | 24.0 ft bgs             | Auge       | r Dep                                            | th                          | 22        | ft b                  | gs        | Rot               | ary Depth <u>ft bgs</u>                         |
| uadrangle        | Rosston Sec. T.                                                     | _ R                     | Date       | : Stan                                           | t                           | 1/3       | 0/98                  | 3         | _ Fini            | sh2/5/98                                        |
| TM (or St        | ate<br>rd. N.(X) <u>921598.6</u> E.(Y) <u>725</u>                   |                         | Wate       | r Lev                                            | el:                         |           |                       |           |                   |                                                 |
|                  | 39° 57' Longitude 86° 1                                             |                         |            |                                                  |                             |           |                       |           |                   |                                                 |
|                  | ation Southern Concrete Pad Excavation Are                          |                         | <u> </u>   | S                                                | AM<br>Si                    | PLI       | <u> </u>              |           |                   | PERSONNEL                                       |
|                  | _                                                                   | <u>a</u>                |            |                                                  | Sample<br>Recovery (inches) | :         |                       | _         |                   | Geologist - Steve Conwa<br>Driller - Dave Ellis |
| rilling Equ      | ipment and Method <u>CME-75</u>                                     | ) c                     | Sample No. | Sample Type                                      | ery (i                      | =         | N Value<br>(blows/6") | ر<br>ار % | PID Reading (ppm) | Helper - Justin                                 |
| = = 7            |                                                                     | Graphic<br>Log<br>Depth | du         | ampl                                             | ampl<br>ecov                | p (ts     | Valu                  | loist     | 0 E               | Helper -                                        |
| Elevation        | DESCRIPTION OF MATERIALS  LEAN CLAY FILL with Sand soft to medium   | 7////                   | 73         |                                                  | ισ œ                        | .4        | z =                   | 2 0       |                   | REMARKS                                         |
|                  | stiff, brown, trace roots and gravel (CL-FILL)                      |                         | / •        | $\backslash / $                                  |                             | В         | 1                     |           | 0.0               |                                                 |
| -883.6           |                                                                     | 1                       |            | X                                                |                             |           | 2                     |           |                   |                                                 |
| -882.6           |                                                                     | <b>////</b> * •         |            | $V \setminus$                                    |                             |           |                       | L         |                   |                                                 |
| -002.0           |                                                                     | 2 2                     | 74         | $\sqrt{7}$                                       | 9                           | .33<br>B  | 1                     | 20        | 0.9               |                                                 |
| -881.6           |                                                                     | <b>////</b> = 3         |            | ΙX                                               |                             | ,         | 1                     |           | 1                 |                                                 |
|                  | Gravel lens at 3.6 feet                                             |                         |            | /                                                |                             |           | 2                     |           |                   |                                                 |
| -880.6           | CLAYEY SAND FILL very stiff, brown                                  | 4                       | 75         | $\langle - \rangle$                              | 16                          | 3.1       | 2                     | 12        | 3.0               |                                                 |
|                  | (SC-FILL)                                                           |                         |            | $  \setminus  $                                  |                             | В         | 7                     |           |                   |                                                 |
| -879.6           |                                                                     | 5                       |            | $ \Lambda $                                      |                             | ı         | 7                     |           |                   |                                                 |
| -878.6           | TEAN OF AV. 11. 2                                                   | ### 6                   |            | $\langle L \rangle$                              |                             |           | <u> </u>              | <u> </u>  | <u>-</u> -        |                                                 |
|                  | LEAN CLAY with Sand hard, brown and gray mottled, trace gravel (CL) |                         | 210        | $\Lambda /$                                      | 21                          | 4.5<br>P  | 6                     | 13        | 17.7              |                                                 |
| 877.6            | <u> </u>                                                            | 7                       |            | <b> </b> X                                       |                             |           | 9                     |           |                   | 12" Steel Casing installed                      |
| İ                |                                                                     |                         |            | $ / \setminus$                                   |                             |           | 12                    |           |                   | to 7 feet.                                      |
| -876.6           | UW = 144.3 pcf SG = 2.766                                           | 8 × 8                   | 211        |                                                  | 24                          | 3.0       | ST                    | 13        | NA                |                                                 |
| -<br>-<br>-875.6 |                                                                     | 9                       | .          |                                                  |                             |           |                       |           |                   |                                                 |
| -875.6           | Grades with Gravel.                                                 | <b>#</b>                | ' <u> </u> | H                                                |                             |           |                       |           | }                 |                                                 |
| -874.6           |                                                                     | # 10                    | 212        |                                                  | 21                          | 3.0       | 5                     | 11        | 4.5               |                                                 |
| :                |                                                                     |                         | 212        | $\mathbb{N}$                                     | -                           | P         | 5                     | ' '       | 7.3               | Bottom of Excavation at                         |
| 873.6            |                                                                     | 1                       | 1          | X                                                |                             |           | 7                     |           | İ                 | 873.8+/-                                        |
|                  |                                                                     |                         | _          | $V \setminus$                                    |                             |           |                       |           |                   |                                                 |
| -872.6<br>-      | Gravel lens at 12.4 feet                                            | 11                      | 213        | 1                                                | 21                          | 3.0<br>P  | 3                     | 11        | 3.5               |                                                 |
| -<br>-<br>-871.6 | 5.2.37.00.0 at 72.77.00t                                            | 1:                      | 3          | 1                                                |                             |           | 5<br>6                |           |                   |                                                 |
| -                |                                                                     |                         |            | $ /\rangle$                                      |                             |           | 7                     |           |                   |                                                 |
| -<br>870.6<br>-  | LEAN CLAY stiff to very stiff, gray, trace                          | 1                       | 4 214      | <del>(                                    </del> | 20                          | 2.0       | 3                     | 9         | 1.5               |                                                 |
| -                | sand and gravel (CL)                                                |                         | _          | $  \setminus  $                                  | }                           | Р         | 4 5                   |           |                   |                                                 |
| -869.6<br>-      |                                                                     | 1                       | 5          | I                                                |                             |           | 9                     |           |                   |                                                 |
| -<br>-<br>-868.6 |                                                                     | 1                       | 6          | L                                                | _                           |           | <u></u>               | <u> </u>  | L_                |                                                 |
|                  |                                                                     |                         | 215        | 1                                                | 21                          | 1.75<br>P | 3 4                   | 11        | 1.5               |                                                 |
| -<br>867.6       |                                                                     | 1                       | 7          | X                                                |                             |           | 4 5                   |           |                   |                                                 |
| -                |                                                                     |                         |            | //                                               | J                           |           | "                     |           |                   |                                                 |
| 866.6            |                                                                     | 1                       | 216        |                                                  | 21                          | 1.5       | 1                     | 11        | 1.5               | 1                                               |
| -<br>-<br>865.6  |                                                                     | <b>1</b>                | ۵          | V                                                |                             | P         | 3                     |           |                   |                                                 |
| 605.6            |                                                                     | W/F '                   | 3          |                                                  |                             |           | 6                     |           |                   |                                                 |
| _                |                                                                     | <i>\\\\\\</i>           | 1          | V \                                              | J                           |           | 1                     |           | Ī                 | 1                                               |

|                                           | Ve                        | Sale MC ENVIRONMENTAL RISK MANAGEMENT                                         | Г          | Field                 | Bo                  | orin | g L      | .og       |                      | Page2_ of2_                             |
|-------------------------------------------|---------------------------|-------------------------------------------------------------------------------|------------|-----------------------|---------------------|------|----------|-----------|----------------------|-----------------------------------------|
|                                           |                           | 3709.001 County <u>Boone</u>                                                  |            | ng No.                |                     | G-8  | -98      |           | _ Mo                 | nitor Well No.                          |
| ı                                         |                           | ne Enviro-Chem Superfund Site                                                 |            |                       |                     |      |          |           |                      |                                         |
|                                           | Surface Ele               | evation 884.6 Completion Depth 24.0 ft bgs                                    | Aug        | er Dept               | :h                  | 22   | ft bo    | as_       | Rot                  | ary Depth <u>ft bgs</u>                 |
|                                           | Quadrangle                | <u>Rosston</u> Sec T R                                                        | Date       | e: Start              |                     | 1/3  | 0/98     | 3         | _ Fini               | sh2/5/98                                |
| ļ                                         | UTM (or St<br>Plane) Cool | ate<br>rd. N.(X) <u>921598.6</u> E.(Y) <u>725895.7</u>                        | Wat<br>Dur | er Leve<br>ing Drilli | il:<br>ing <u>¥</u> | 21.0 | ) ft l   | ogs       | _ At                 | Completion <u> 1.0 ft bgs</u>           |
| l                                         | Latitude                  | 39° 57' Longitude 86° 16' "                                                   |            | SA                    | MA                  | PLF  | S        |           |                      | PERSONNEL                               |
| l                                         |                           | ation Southern Concrete Pad Excavation Area                                   | -          | ΤŤ                    | <u>§</u>            |      |          |           |                      | Geologist - Steve Conway                |
|                                           | Drilling Equ              | ipment and Method CME-75                                                      | و ا        | Sample Type           | (incl               |      |          | €         | guil                 | Driller - Dave Ellis<br>Helper - Justin |
| ١                                         |                           | DESCRIPTION OF MATERIALS                                                      | Sample No. | aldu                  | e oc                | (ts) | /alue    | isture    | PID Reading<br>(ppm) | Helper -                                |
|                                           | Elevation                 |                                                                               |            |                       |                     |      |          | ≗ੈਂ<br>11 |                      | REMARKS                                 |
|                                           | E                         | LEAN CLAY stiff to very stiff, gray, trace sand and gravel (CL)               | 21         | $\Lambda$             | 22                  | P P  | 3        | ''        | 1.5                  |                                         |
|                                           | 863.6                     | ₹21                                                                           |            | X                     | 1                   |      | 12<br>12 |           |                      |                                         |
| Ì                                         | 862.6                     |                                                                               | 2 21       | V                     |                     |      |          |           | 0.5                  |                                         |
|                                           | E                         | POORLY GRADED SAND medium grained, dense, gray (SP)                           | 218        | $^{I}$                | 18                  | NP   | 6<br>12  | 9         | 0.5                  |                                         |
| ļ                                         | 861.6                     | 23                                                                            | 3          | X                     | ļ                   |      | 19       | ļ         |                      |                                         |
| l                                         | 860.6                     | 24                                                                            | . L        | I                     |                     |      |          |           |                      |                                         |
|                                           |                           | Boring terminated at 24 feet and tremmie grouted with cement-bentonite grout. | 1          |                       |                     |      |          |           |                      |                                         |
|                                           |                           |                                                                               | }          | 1                     |                     |      |          |           |                      |                                         |
|                                           |                           |                                                                               |            |                       |                     | İ    |          |           |                      |                                         |
|                                           |                           |                                                                               |            |                       |                     |      | l        |           |                      |                                         |
|                                           |                           |                                                                               | ĺ          |                       |                     |      |          |           |                      |                                         |
| l                                         |                           |                                                                               |            |                       | 1                   |      |          |           |                      |                                         |
| 1                                         |                           |                                                                               |            |                       |                     |      |          |           |                      |                                         |
| l                                         |                           |                                                                               |            |                       | ļ                   |      |          |           |                      |                                         |
| l                                         |                           |                                                                               |            |                       |                     |      |          |           |                      |                                         |
| ١                                         |                           |                                                                               |            |                       | ļ                   |      |          |           |                      |                                         |
| 1                                         |                           |                                                                               |            |                       |                     |      |          |           |                      |                                         |
|                                           |                           |                                                                               |            |                       |                     |      |          |           |                      |                                         |
|                                           |                           |                                                                               |            |                       |                     |      |          |           |                      |                                         |
|                                           |                           |                                                                               |            |                       | •                   |      |          |           |                      |                                         |
| ١                                         |                           |                                                                               |            |                       | ŀ                   | İ    |          |           |                      |                                         |
|                                           | İ                         |                                                                               |            |                       |                     |      |          |           |                      |                                         |
| project no:\trun date:3/6/96              |                           |                                                                               |            |                       |                     |      |          | ļ         |                      |                                         |
| 5                                         |                           |                                                                               |            |                       |                     |      |          |           |                      |                                         |
| roject                                    |                           |                                                                               |            |                       |                     |      |          |           |                      |                                         |
| 2                                         |                           |                                                                               |            |                       |                     |      |          |           |                      |                                         |
| ct D                                      |                           |                                                                               |            |                       |                     |      |          |           |                      |                                         |
| 2                                         |                           |                                                                               |            |                       |                     |      |          |           |                      |                                         |
| IL EPA                                    |                           |                                                                               |            |                       |                     |      |          |           | Ì                    |                                         |
| template ID:ILEPA\gint project ID:\Versar |                           |                                                                               |            |                       |                     |      |          |           |                      |                                         |
| Ē                                         | L                         |                                                                               |            |                       |                     |      | L        | <u></u>   | <u> </u>             |                                         |

| We           | HC ENVIRONMENTAL RISK MA                                       | NAGEMEN'                | Т          | Field                | d B                         | orir     | ıg L                  | .og        |                      | Page1 of2_                                 |
|--------------|----------------------------------------------------------------|-------------------------|------------|----------------------|-----------------------------|----------|-----------------------|------------|----------------------|--------------------------------------------|
|              | 3709.001                                                       |                         |            | ng No.               |                             | G-       | 9-98                  |            | _ <b>M</b> o         | onitor Well No.                            |
| Project Nan  | ne Enviro-Chem Superfund Site                                  |                         | Site       | Locat                | ion                         |          | U                     | S 4:       | 21, Z                | ionsville, Indiana                         |
| Surface Ele  | vation 884.4 Completion Depth                                  | 36.0 ft bgs             | Aug        | er Dep               | th                          | 34       | ft b                  | gs         | _ Ro                 | tary Depth <u>ft bgs</u>                   |
| Quadrangle   |                                                                | R.                      | Date       | e: Star              | t                           | 1/2      | 2/98                  | 3          | Fin                  | ish1/26/98                                 |
| UTM (or St   | ate<br>rd. N.(X) 921739.4 E.(Y) 7258                           |                         | Wat        | er Lev               | el:                         |          |                       |            |                      | Completion <u>▼ ft bgs</u>                 |
|              |                                                                |                         |            |                      |                             |          |                       |            | _ ```                |                                            |
|              | 39° 57' Longitude 86° 1                                        |                         | -          | <u>S</u>             |                             |          | ES                    |            |                      | PERSONNEL                                  |
| Boring Loca  | Southern Concrete Pad Excavation Area                          | )                       |            |                      | Sample<br>Recovery (inches) |          |                       |            |                      | Geologist - C. O'Neil Driller - Dave Ellis |
| Drilling Equ | ipment and Method <u>CME-75</u>                                | <u> </u>                | Sample No. | Sample Type          | ر<br>ر                      | _        | N Value<br>(blows/6") | 6 (%<br>(% | PID Reading<br>(ppm) | Helper - Justin                            |
|              |                                                                | Graphic<br>Log<br>Depth | a du       | aldm                 | mple                        | ts)      | Valu                  | oistu      | D Re                 | Helper -                                   |
| Elevation    | DESCRIPTION OF MATERIALS  13" Concrete slab over 12" Crushed   |                         | 7          | Š                    | ॐ æ                         | Ō<br>NA  |                       | žŏ         | ₹ 0                  | REMARKS                                    |
| F            | limestone subbase floor                                        | 444                     | ĺ          | $\mathbb{N}$         | •                           | 144      | -                     |            |                      |                                            |
| 883.4        |                                                                | 4 4 E                   |            | ΙX                   |                             |          | 7<br>12               |            | 343                  |                                            |
| 882.4        |                                                                | 44E 2                   |            | /                    |                             |          |                       |            |                      |                                            |
| = °°°2.4     | LEAN CLAY very stiff to hard, gray (CL)                        |                         | 8          | 1                    | 15                          | 4.5<br>P | 6<br>7                | 11         | 284                  |                                            |
| 881.4        | UW = 146 pcf                                                   | <b>////</b> E 3         |            | 1                    |                             |          | 8                     |            |                      |                                            |
|              |                                                                |                         |            | $   \rangle \rangle$ |                             |          | 9                     |            |                      |                                            |
| 880.4        |                                                                | 4                       | 9          | $\mathbf{t}$         | 15                          |          | 2                     | 11         | 280                  | ·                                          |
| 879.4        | Sand lens at 4.5 feet                                          |                         |            | $\mathbb{I}$         |                             | P        | 6<br>5                |            |                      |                                            |
| E 873.4      | Grades with CLAYEY SILT                                        |                         | '          |                      |                             |          | 6                     |            |                      |                                            |
| 878.4        |                                                                | <b>₩</b> E 6            | 27         | (                    | 17                          | 4.1      | 4                     | 11         |                      |                                            |
| l E 🔝        |                                                                |                         | '          | $\backslash /$       | ''                          | В        | 6                     | ' '        |                      | 12" Steel Casing installed                 |
| 877.4        |                                                                | 7                       | '          | X                    |                             |          | 8                     |            |                      | to 7 feet.                                 |
| 876.4        |                                                                | <i>∭</i> _₹ 8           | , L        | V                    |                             |          |                       |            |                      |                                            |
| [-           | POORLY GRADED SAND medium grained, loose, gray, saturated (SP) | E.                      | 28         | $\Lambda$            | 17                          | 2.5<br>P | 2                     | 12         |                      |                                            |
| 875.4        | LEAN CLAY to SANDY LEAN CLAY gray,                             | 97777                   |            | X                    |                             | NP       | 4                     |            |                      | Bottom off Excavation at                   |
| l E          | trace gravel (CL)                                              |                         | -          | //                   |                             |          | 4                     |            |                      | 875.6 + /-                                 |
| 874.4        | POORLY GRADED SAND medium grained,                             | ##E 1                   | 0 29       |                      | 19                          | NP       | 3                     | 11         |                      |                                            |
| <del> </del> | loose, gray, saturated (SP)                                    |                         | 1          | V                    |                             | 2.0<br>B | 3                     |            |                      |                                            |
|              | LEAN CLAY to SANDY LEAN CLAY gray, trace gravel (CL)           |                         |            | $   \wedge   $       |                             |          | 5                     |            |                      |                                            |
| 872.4        | UW = 148 pcf                                                   | 1                       | 2 30       | ( )                  | 18                          | 1.4      | 2                     | 11         | -                    |                                            |
| E            |                                                                | <b>///</b> .            |            | $  \bigvee$          |                             | В        | 4                     |            |                      |                                            |
| 871.4        |                                                                | 1                       | 3          | $ \Lambda $          |                             |          | 6                     |            |                      |                                            |
| 870.4        |                                                                | <b>///</b> _1           | 4 31       | <u> </u>             | 22                          | 1.2      | 1                     | 1.         |                      | _                                          |
| I E          |                                                                |                         | 31         | $\Lambda$            | 22                          | 1.3<br>B | 4                     | 11         |                      |                                            |
| 869.4        | 11144 - 1.42 mas                                               | 1                       | 5          | IX                   |                             |          | 6                     |            |                      |                                            |
| 868.4        | UW = 143 pcf                                                   | <b>////</b>             | _          | V                    | $\downarrow$                |          |                       |            |                      |                                            |
| E            |                                                                | <b>/////F</b> '         | 6 32       | 1                    | 16                          | 2.2<br>B | 3                     | 11         |                      |                                            |
| 867.4        |                                                                | <b>////</b> ** 1        | 7          | 1                    |                             |          | 7                     |            |                      |                                            |
| E            |                                                                |                         |            | $ /\rangle$          |                             |          | 9                     | }          |                      |                                            |
| 866.4        | SAND lens at 18 feet                                           | 1                       | 8 33       |                      | 13                          | 3.25     | 8                     | 9          | <u> </u>             | -                                          |
| 865.4        |                                                                | <b>////</b> * .         | 9          | V                    |                             | P        | 11                    |            |                      |                                            |
|              | UW = 140 pcf                                                   | <b>////</b> *           | 3          |                      |                             |          | 10                    |            |                      |                                            |
|              |                                                                |                         |            |                      |                             |          |                       |            | <u> </u>             |                                            |

|                        | 3709.001                                             |                            |                |                     |               |                     |                             |          |                       |                 |                      |                                               |
|------------------------|------------------------------------------------------|----------------------------|----------------|---------------------|---------------|---------------------|-----------------------------|----------|-----------------------|-----------------|----------------------|-----------------------------------------------|
|                        | ne Enviro-Chem                                       |                            |                |                     |               |                     |                             |          |                       |                 |                      |                                               |
|                        | vation884.4                                          | _                          |                |                     | _             |                     |                             |          |                       |                 |                      |                                               |
| uadrangle<br>FM (or St | Rosston Sec                                          | т                          | . R            |                     | Date:<br>Wate | Start               |                             | 1/2      | 2/98                  | 3               | _ Fin                | ish <u>1/26/98</u>                            |
| ane) Coo               | rd. N.(X) 921739.4                                   | E.(Y)                      | 76.6           |                     | Durin         | g Drill             | ling <u>V</u>               | 28.0     | ft b                  | gs              | _ At                 | Completion <u> ft</u>                         |
| titude                 | 39° 57' " Long                                       | itude <u>86°</u> <u>16</u> | <u>3 '</u>     |                     |               | <u>-</u>            | ΔΜ                          | PI I     | FS                    |                 |                      | PERSON                                        |
|                        | ation Southern Concrete Pa                           |                            |                |                     |               |                     | (Se                         |          |                       |                 |                      | Geologist - C. O'Nei                          |
| illing Equ             | ipment and Method <u>CME-75</u>                      |                            |                |                     | <u>ن</u>      | λbe                 | ij                          |          | ۔ ا                   | ŝ               | g.                   | Driller - Dave Elli                           |
|                        | · · · · · · · · · · · · · · · · · · ·                |                            | Graphic<br>Log | Depth<br>(feet bgs) | Sample No.    | Sample Type         | yery                        | tsf)     | alue<br>ws/6          | sture<br>tent ( | PID Reading<br>(ppm) | Helper - Justin<br>Helper -                   |
| levation               | DESCRIPTION OF N                                     | MATERIALS                  | Log G          | e Ce                | Sam           | Sam                 | Sample<br>Recovery (inches) | Qp (tsf) | N Value<br>(blows/6") | Mois<br>Con     | 6 g                  | REMARI                                        |
|                        |                                                      |                            |                |                     | 34            | abla 1              | 14                          | NP       | 4                     |                 |                      |                                               |
| -863.4                 | POORLY GRADED SAND me<br>grained, loose to medium de |                            | E              | - 21                |               | VΙ                  |                             |          | 4                     |                 |                      |                                               |
| l                      | gravel (SP)                                          | , 5.2,,                    | E              |                     |               | $/\backslash$       |                             |          | 7                     |                 |                      |                                               |
| 862.4                  |                                                      |                            | E              | - 22                | 35            | (-)                 | 12                          | NP       | 4                     |                 |                      | -                                             |
|                        |                                                      |                            | E              |                     |               | $  \setminus  $     |                             |          | 8                     |                 |                      |                                               |
| 861.4                  |                                                      |                            | E              | - 23<br>:           |               | $ \Lambda $         |                             |          | 10                    |                 |                      |                                               |
| 860.4                  |                                                      |                            | E              | - 24                | 36            | $\square$           | 14                          | AID.     |                       |                 |                      | Grain Sina Arabada                            |
|                        | Cc = 0.49<br>Cu = 7.8                                |                            | E              |                     | 30            | $\setminus A$       | 14                          | NP       | 6<br>8                |                 |                      | Grain Size Analysis                           |
| 859.4                  | 24 - 110                                             |                            |                | - 25                |               | X                   |                             | }        | 10                    |                 |                      |                                               |
| 055                    |                                                      |                            | E E            |                     |               | $V\setminus$        |                             |          |                       |                 |                      |                                               |
| -858.4                 |                                                      | i                          |                | - 26<br>:           | 37            | $\Box$              | 13                          | NP       | 6                     |                 |                      | 1                                             |
| -857.4                 |                                                      |                            | E              | - 27                |               | V                   |                             |          | 10                    |                 | t<br>                |                                               |
|                        |                                                      | ļ                          | E              | -                   |               | $ / \setminus  $    |                             |          | 11                    |                 | <br>                 |                                               |
| -856.4                 |                                                      |                            | F              | 28                  | 38            | (-)                 | 13                          | NP       | 4                     |                 | -                    | 1                                             |
| -855.4                 |                                                      |                            | E              | :<br>- 29           |               | $ \bigvee $         |                             |          | 10                    |                 |                      |                                               |
| -855.4                 |                                                      |                            | F              | - 29<br>-           |               | $ \Lambda $         |                             |          | 10                    |                 |                      |                                               |
| -854.4                 |                                                      |                            | F              | - 30<br>-           | 39            | $\langle - \rangle$ | 14                          | NP       | 8                     | _               |                      | 1                                             |
|                        |                                                      |                            | F              |                     | 29            | \ /                 | '*                          | INF      | 12                    | <b> </b><br>    |                      |                                               |
| -853.4                 |                                                      |                            | F              | - 31                |               | X                   |                             |          | 12                    |                 |                      |                                               |
| -852.4                 |                                                      |                            | E              | :<br>- 32           |               | /                   |                             |          |                       | <u> </u>        |                      |                                               |
| JJE.4                  |                                                      |                            | E              | - "                 | 40            | ΝΖ                  | 17                          | NP       | 3                     |                 |                      |                                               |
| -851.4                 |                                                      |                            | E              | _<br>- 33           |               | X                   |                             |          | 18                    |                 |                      | <u>,                                     </u> |
|                        |                                                      |                            | E              | •                   |               | $V \setminus$       |                             |          | 21                    | ļ               |                      |                                               |
| -850.4                 |                                                      |                            | E              | - 34<br>-           | 41            |                     | 19                          | NP       | 7                     | 18              | <u> </u>             | 1                                             |
| -849.4                 | SILT medium dense, gray, t                           | race gravel (SM)           |                | -<br>- 35           |               | Ι \                 |                             |          | 11                    |                 |                      |                                               |
|                        |                                                      |                            |                |                     |               | $ / \rangle$        |                             |          | 14                    |                 |                      |                                               |
| 848.4                  | Boring terminated at 36 fee                          | t and tremmie              |                | 36                  | -             | <u> </u>            | _                           | -        | -                     | -               | $\vdash$             | †                                             |
| l                      | grouted with cement-benton                           |                            |                |                     |               |                     | <br>                        |          |                       |                 |                      |                                               |
|                        |                                                      |                            |                |                     |               |                     |                             |          |                       |                 |                      |                                               |
|                        |                                                      |                            |                |                     |               |                     |                             |          |                       |                 |                      |                                               |
|                        |                                                      |                            |                |                     |               |                     |                             |          |                       |                 |                      |                                               |
|                        |                                                      |                            |                |                     | 1             | 1                   | 1                           | i        | 1                     | i               | 1                    | 1                                             |

| VC                         | INC. ENVIRONMENTAL RISK MA                                        | NAGEM          | IENT             |               | -ieid                                            | ים ג                 | ) TII    | ıg ı          | .og                     |                      | Page1 of2                       |
|----------------------------|-------------------------------------------------------------------|----------------|------------------|---------------|--------------------------------------------------|----------------------|----------|---------------|-------------------------|----------------------|---------------------------------|
| Project No.                | 3709.001 County Boo                                               | ne             |                  | Borin         | g No.                                            |                      | G-1      | 0-98          | 3                       | _ Mo                 | nitor Well No.                  |
| Project Nam                | ne Enviro-Chem Superfund Site                                     |                |                  | Site L        | .ocati                                           | ion _                |          | L             | IS 4:                   | <u>21, Z</u>         | ionsville, Indiana              |
| Surface Ele                | vation 883.8 Completion Depth                                     | 32.5 ft        | <u>bgs</u>       | Auge          | r Dep                                            | th                   | 31       | ft b          | gs                      | _ Rot                | tary Depth <u>Justin ft bgs</u> |
| Quadrangle                 | Rosston Sec. T.                                                   | _ R            |                  | Date:         | Star                                             | t                    | 1/2      | 8/98          | 3                       | _ Fin                | ish <u>2/3/98</u>               |
| UTM (or Sta<br>Plane) Coor | ate<br>rd. N.(X) 921668.0 E.(Y) 725                               | 875.2          |                  | Wate<br>Durin |                                                  |                      | 16.      | 0 ft          | bgs                     | _ At                 | Completion <u>▼ 0.1 ft bgs</u>  |
| Latitude                   | 39° 57' * Longitude 86° 1                                         | <u>6 '</u>     |                  |               | <u> </u>                                         | ΑM                   | PI I     | FS            |                         |                      | PERSONNEL                       |
| Boring Loca                | ation Southern Concrete Pad Excavation Are                        | a              |                  |               |                                                  |                      |          |               |                         | <u> </u>             | Geologist - Steve Conway        |
| Drilling Equi              | ipment and Method CME-75                                          |                |                  | ا ہ           | Ape                                              | (inches)             |          | ا             | €                       | <u>6</u>             | ,                               |
|                            | -                                                                 | piłą           | oth<br>t bgs     | Sample No.    | Sample Type                                      | Sample<br>Recovery ( | (tst)    | alue<br>ws/6' | sture<br>tent           | PID Reading<br>(ppm) | Helper -<br>Helper -            |
| Elevation                  | DESCRIPTION OF MATERIALS                                          | Graphic<br>Log | (feet bgs)       | Sam           | Sam                                              | Sam                  | å        | z g           | Moisture<br>Content (%) | <b>5</b> g           | REMARKS                         |
| F                          | 13" CONCRETE over limestone subbase.                              | 44             | <del>-</del>     |               |                                                  |                      |          |               |                         |                      |                                 |
| 882.8                      |                                                                   | 14.4           | _ 1              | 61            |                                                  | 6                    | ΝP       | <u> </u>      | 13                      | 121                  |                                 |
| E                          |                                                                   | 44             | _                |               | $\setminus$ /                                    |                      |          | -             |                         |                      |                                 |
| 881.8                      |                                                                   | 00             | _ 2              |               | X                                                |                      |          | 11            |                         |                      |                                 |
| 880.8                      |                                                                   | 44             | _<br>_ 3         |               |                                                  |                      |          |               |                         |                      |                                 |
| E 500.0                    | CLAYEY SAND FILL brown, trace brick and gravel (SC)               |                | _                | 62            | N /                                              | 15                   | 1.0<br>B | 5 4           | 17                      | 139                  | į                               |
| 879.8                      | •                                                                 |                | <u>-</u> 4       |               | X                                                |                      |          | 3             |                         |                      |                                 |
| E                          |                                                                   |                | =                |               | $/\setminus$                                     |                      |          | 3             |                         |                      |                                 |
| 878.8                      | LEAN CLAY medium stiff, brown, black and                          |                | - 5<br>-         | 63            | 7                                                | 22                   | .7       | 1             | 21                      | 63                   | 1                               |
| 877.8                      | gray (CL)  Grades to brown.                                       |                | -<br>- 6         |               | V                                                |                      | В        | 3 2           |                         |                      |                                 |
|                            | diades to blown.                                                  |                | =                |               | $ /\rangle$                                      |                      |          | 2             |                         |                      |                                 |
| 876.8                      |                                                                   |                | <u> </u>         | 125           | $\langle - \rangle$                              | 20                   | 5.8      | 5             | 12                      | 34                   | 12" Steel Casing installed      |
| F                          |                                                                   |                | -                |               | $  \bigvee$                                      |                      | 8        | 8             | Ì                       |                      | to 7 feet.                      |
| 875.8                      |                                                                   |                | - 8<br>-         |               | $ \Lambda $                                      |                      |          | 10            |                         |                      |                                 |
| 874.8                      | SANDÝ ČLAÝ dark brown (CL)                                        |                | _<br>_ 9         | 126           | <b>/</b>                                         | 16                   | .85      | ST            | 9                       | NA                   | Bottom of Excavation at         |
| E                          | UW=133.1 pcf SG=2.75                                              |                | _                |               |                                                  |                      |          |               |                         |                      | 874.8 + /-                      |
| 873.8                      |                                                                   |                | <u> </u>         |               |                                                  |                      |          |               |                         |                      |                                 |
| 872.8                      |                                                                   |                | -<br>-<br>11     |               |                                                  |                      |          |               | _                       |                      | 1                               |
| F                          | SAND medium to coarse grained, medium                             |                | = ``             | 127           | $\Lambda$                                        | 12                   | NP       | 3<br>6        | 10                      | 6.0                  |                                 |
| 871.8                      | dense, trace clay (SP)  LEAN CLAY with Sand very stiff, gray (CL) |                | _ 12             | 2             | X                                                |                      |          | 7             |                         |                      |                                 |
| E                          |                                                                   |                | =                | ,             | $V\setminus$                                     |                      |          |               |                         |                      |                                 |
|                            |                                                                   |                | 13<br><br>       | 128           | 1                                                | 13                   | 3.3<br>B | 4 5           | 11                      | 2.0                  |                                 |
| 869.8                      |                                                                   |                | <u>-</u><br>- 14 | ·             | Ι χ                                              | <br>                 | ]        | 6             |                         |                      |                                 |
| E                          |                                                                   |                | =                |               | $ / \setminus$                                   |                      |          | 6             |                         |                      |                                 |
| 868.8                      |                                                                   |                | 18<br>           | 129           |                                                  | 17                   | 3.0      | 2             | 10                      | 5.0                  | 1                               |
| 867.8                      |                                                                   |                | _<br>¥16         | 3             | $ \bigvee$                                       |                      | В        | 5             | 1                       |                      |                                 |
| E                          |                                                                   |                | = ``             |               | $ /\rangle$                                      |                      |          | 6             |                         |                      |                                 |
| 866.8                      | POORLY GRADED SAND medium to coarse                               |                | 17               | 130           |                                                  | 4                    | NP       | -             | -                       | 0                    | 1                               |
| E 005 0                    | grained, gray (SP)                                                |                | Ξ ,,             |               | V                                                |                      |          | 2             |                         |                      |                                 |
| 865.8                      |                                                                   |                | 18<br><br>       | <b>'</b>      | $ \Lambda $                                      |                      |          | 2             |                         |                      |                                 |
| 864.8                      |                                                                   |                | <u>-</u> 19      | 131           | <del>(                                    </del> | 15                   | NP       | 2             | <del> </del> -          | 0                    | -                               |
| E                          |                                                                   |                | Ē                | 31            | ΙX                                               |                      | 141      | 5             |                         |                      |                                 |
|                            | VERSAR, INC.; 200 W. 22nd Stree                                   |                | 250              | 1             | <u> </u>                                         | 11 01                | 1140     |               | 0/20                    | 9.05                 |                                 |

template ID:ILEPA\gint project ID:\Versar project no:\\run date:3/6/98 Quadrangle Ross
UTM (or State
Plane) Coord. N.(X) Drilling Equipment and Method CME-75 **Boring Location** Surface Elevation Project Name Project No. Elevation -859.8 -860.8 -851.8 -853.8 -855.8 -856.8 -857.8 -858.8 -861.8 862.8 -852.8 854.8 39° DESCRIPTION OF MATERIAL grouted with cement-bentonite grout. SILTY SAND to FINE SAND medium dense, gray (SM/SP) Boring terminated at 32.5 feet and tremmie grained, gray (SP) POORLY GRADED SAND medium to coarse Rosston Southern Concrete Pad Excavation Area 3709.001 MC ENVIRONMENTAL RISK MANAGEMENT 883.8 921668 VERSAR, INC.; 200 W. Enviro-Chem Superfund Site Longitude County Completion 22nd Street; 960 Depth 32.5 വ 25875 16: Suite Graphic Log ft bgs 250; Depth 32 30 29 28 26 25 24 23 22 (feet bgs) Lombard, Water Level: During Drilling 132 Auger Depth Boring No. Date: Start Site Location 135 134 Sample No. Field Boring Log Sample Type ഗ = AMPLE Sample 16 60148; Recovery (inches ⊈16.0 ft bgs 목 G-10-98 Qp (tsf) 1/28/98 31 ft bgs N Value 20 13 13 13 19 630/268-8555 9 7 8 5 9 7 8 6 **രോഗ** ഗ ഗ (blows/6") US 421, Zionsville, Indiana Moisture Content (%) PID Reading 0 0 0 0 o ۶ Rotary Depth Monitor Well No. (ppm) Completion Sampler Page Helper Helper -Driller -Geologist -PERSONNEL REMARKS 2/3/98 N H Justin Dave Ellis Steve Conway 0.1 으 ft bgs ft bgs 1

| INC. ENVIRONMENTAL RISK MA                 | NAGEMEN                                                                                                                                                                                                                                                                   | Τ '                                                                                     | rieid                                                                                                                          | I D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Orii                                                                                                          | ıg L                                         | .og                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               | Page1_ of2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                                                                                                                                                                                                                                                                           |                                                                                         | ıg No.                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G-1                                                                                                           | 1-98                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ Mo                                                          | nitor Well No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| e Enviro-Chem Superfund Site               |                                                                                                                                                                                                                                                                           | Site                                                                                    | Locati                                                                                                                         | ion .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |                                              | JS 4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21, Z                                                         | ionsville, Indiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| vation 884.6 Completion Depth              | 36.0 ft bgs                                                                                                                                                                                                                                                               | Auge                                                                                    | r Dep                                                                                                                          | th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34                                                                                                            | ft b                                         | gs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ Rot                                                         | tary Depth <u>ft bgs</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                            | _ R                                                                                                                                                                                                                                                                       | Date<br>Wate                                                                            | : Star                                                                                                                         | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2                                                                                                           | 2/98                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ Fin                                                         | ish <u>1/27/98</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| d. N.(X) 921739.6 E.(Y) 725                |                                                                                                                                                                                                                                                                           | Durir                                                                                   | ıg Dril                                                                                                                        | ling <u>T</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> 220.</u>                                                                                                  | 0 ft                                         | bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ At                                                          | Completion <u>Y</u> ft bg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                            |                                                                                                                                                                                                                                                                           |                                                                                         | <u>S</u>                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | ES                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               | PERSONNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ition Southern Concrete Pad Excavation Are | a                                                                                                                                                                                                                                                                         | -                                                                                       |                                                                                                                                | ches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               | Geologist - Steve Conw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ipment and Method <u>CME-75</u>            | ع غز                                                                                                                                                                                                                                                                      | No.                                                                                     | le Type                                                                                                                        | le<br>'ery (in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ë                                                                                                             | ue<br>s/6"}                                  | ure<br>nt (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bading                                                        | Driller - Dave Ellis<br>Helper - Justin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DESCRIPTION OF MATERIALS                   | Grap<br>Log Dept                                                                                                                                                                                                                                                          | Samp                                                                                    | Samp                                                                                                                           | Samp<br>Recov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Op (ts                                                                                                        | N Val                                        | Moist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PID R<br>(ppm)                                                | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10" Concrete floor slab over 14" Crushed   | 4.4.                                                                                                                                                                                                                                                                      | 4                                                                                       | 17                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | -                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| limestone subbase                          | 444                                                                                                                                                                                                                                                                       |                                                                                         | V                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 4                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            |                                                                                                                                                                                                                                                                           |                                                                                         | $ /\rangle$                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 11                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LEAN CLAY FILL with Sand very stiff,       |                                                                                                                                                                                                                                                                           | 5                                                                                       | $\langle - \rangle$                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.5                                                                                                           | 4                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.9                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| brown and gray mottled (CL-FILL)           |                                                                                                                                                                                                                                                                           | ,                                                                                       | V                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Р                                                                                                             | 5                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | <b>WE</b>                                                                                                                                                                                                                                                                 | '                                                                                       | $ \Lambda $                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 9                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LEAN CLAY stiff to very stiff, gray, trace |                                                                                                                                                                                                                                                                           | F 6                                                                                     | $\langle - \rangle$                                                                                                            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0                                                                                                           | 3                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.5                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| sand and gravel (CL)                       |                                                                                                                                                                                                                                                                           |                                                                                         | $\mathbb{N}$                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Р                                                                                                             | 4                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | <b>///</b> //////                                                                                                                                                                                                                                                         | 5                                                                                       | X                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 6                                            | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | WE.                                                                                                                                                                                                                                                                       | <u>, L</u>                                                                              | $V \setminus$                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            |                                                                                                                                                                                                                                                                           | 42                                                                                      | N/                                                                                                                             | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.7<br>B                                                                                                      | 3                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.8                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | · - ·                                                                                                                                                                                                                                                                     | 7                                                                                       | X                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 2                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               | Steel Casing installed to feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            |                                                                                                                                                                                                                                                                           |                                                                                         | $V \setminus$                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 5                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            |                                                                                                                                                                                                                                                                           | 43                                                                                      | 1                                                                                                                              | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l .                                                                                                           |                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                           | Bottom of Excavation at 876.6 + /-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                            |                                                                                                                                                                                                                                                                           | a                                                                                       | ΙV                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В                                                                                                             | 7                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            |                                                                                                                                                                                                                                                                           |                                                                                         |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 2                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IIW = 145 1 pef SC : 2.70                  | 1                                                                                                                                                                                                                                                                         | 0 44                                                                                    |                                                                                                                                | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.8                                                                                                           | ST                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OW = 145.1 pct SG = 2.70                   |                                                                                                                                                                                                                                                                           |                                                                                         |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В                                                                                                             |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | /////                                                                                                                                                                                                                                                                     | 1                                                                                       |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | # 1                                                                                                                                                                                                                                                                       | 2                                                                                       |                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                             |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            |                                                                                                                                                                                                                                                                           | 45                                                                                      | $\mathbb{N}/$                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3<br>P                                                                                                      | 3                                            | ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.4                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | 1                                                                                                                                                                                                                                                                         | 3                                                                                       | X                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 5                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | <b>///</b> .                                                                                                                                                                                                                                                              |                                                                                         | $\backslash \backslash$                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | ľ                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | <i>##</i>                                                                                                                                                                                                                                                                 | 4 46                                                                                    | 1/                                                                                                                             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.9                                                                                                           | 1                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.4                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | ///E_1                                                                                                                                                                                                                                                                    | 5                                                                                       | <b> </b> \ \                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 5                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            |                                                                                                                                                                                                                                                                           |                                                                                         | $ /\rangle$                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 6                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | <b>1</b>                                                                                                                                                                                                                                                                  | 6 47                                                                                    |                                                                                                                                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                                                                                           | 2                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.9                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | <i>₩</i> .                                                                                                                                                                                                                                                                | 7                                                                                       | 1                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В                                                                                                             | 3                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sand lens at 17.5 feet                     |                                                                                                                                                                                                                                                                           | <b>′</b>                                                                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 4                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | ### <u></u> 1                                                                                                                                                                                                                                                             | 8 48                                                                                    | +                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14                                                                                                            | 1                                            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 9                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| stiff, gray (CL)                           |                                                                                                                                                                                                                                                                           | 73                                                                                      | $\mathbb{N}$                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В                                                                                                             | 2                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ····, g, ,,                                | <i>/////</i>                                                                                                                                                                                                                                                              | - 1                                                                                     | 1 \                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| , <b>g</b> ,                               | <b>///</b>                                                                                                                                                                                                                                                                | 9                                                                                       | X                                                                                                                              | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               | 5                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | Boyland County Boyland Site Enviro-Chem Superfund Site Enviro-Chem Superfund Site Environ 884.6 Completion Depth Rosston Sec. T. Sec. T. Sec. T. Sec. T. Sec. T. Sec. T. Sec. T. Sec. T. Sec. Sec. T. Sec. T. Sec. T. Sec. Sec. T. Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec | TEAN CLAY Stiff to very stiff, brown and gravel (CL)  Sand lens at 17.5 feet  Teans Sec | ### Sand lens at 17.5 feet  ### Enviro-Chem Superfund Site  ### Enviro-Chem Superfund Site    Site   Site   Site   Site   Site | Borney Boone  Enviro-Chem Superfund Site  Site Location  884.6 Completion Depth 36.0 ft bgs  Auger Dep  Rosston Sec. T. R. Date: Star  Water Lev  ate d. N.(X) 921739.6 E.(Y) 725846.6  39° 57' Longitude 86° 16'  Station Southern Concrete Pad Excavation Area  Ignment and Method CME-75  DESCRIPTION OF MATERIALS  10° Concrete floor slab over 14° Crushed limestone subbase  LEAN CLAY FILL with Sand very stiff, brown and gray mottled (CL-FILL)  LEAN CLAY stiff to very stiff, gray, trace sand and gravel (CL)  UW=145.1 pcf SG=2.70  Sand lens at 17.5 feet  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  Sand lens at 17.5 feet  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY  LEAN CLAY with Sand to SANDY CLAY | Boring No.  The Enviro-Chem Superfund Site  Site Location  884.6 Completion Depth 36.0 ft bgs  Rosston  SecTR | 3709.001   County   Boone   Boring No.   G-1 | Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 feet   Sand lens at 17.5 f | Sample   Southern County   Southern   Site   Location   US 4: | Sample   Boone   Boring No.   G-11-98   More   Enviro-Chem Superfund Site   Site Location   US 421, Z   Vation   884.6   Completion Depth   36.0 ft bgs   Rosston   Sec.   T.   R.   Part   Rosston   Sec.   T.   R.   Part   Rosston   Sec.   T.   R.   Part   Rosston   T.   R.   Part   Rosston   T.   R.   Part   Rosston   T.   R.   Part   Rosston   T.   R.   Part   Rosston   T.   R.   Part   Rosston   T.   R.   Part   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rosston   T.   Rossto |

| VC                        | INC. ENVIRONMENTAL RISK MA                                                    | NAGEN          | <b>JENT</b>  |               | 1610                          | 3 80                        | orın         | ıg r                  | .og             |                      | Page2_ of2_                             |
|---------------------------|-------------------------------------------------------------------------------|----------------|--------------|---------------|-------------------------------|-----------------------------|--------------|-----------------------|-----------------|----------------------|-----------------------------------------|
|                           | 3709.001 CountyBoo                                                            |                |              |               | g No.                         |                             | G-1          | 1-98                  | 3               | _ <b>M</b> o         | nitor Well No.                          |
| Project Nan               | ne Enviro-Chem Superfund Site                                                 |                |              | Site L        | .ocati                        | on .                        |              | Ļ                     | S 4:            | 21, Z                | ionsville, Indiana                      |
| Surface Ele               | vation 884.6 Completion Depth                                                 | 36.0 ft        | bgs          | Auge          | r Dep                         | th                          | 34           | ft b                  | gs              | _ Rot                | tary Depth <u>ft bgs</u>                |
|                           | Rosston Sec. T.                                                               | _ R            |              |               |                               |                             | 1/2          | 2/98                  | 3               | _ Fini               | ish <u>1/27/98</u>                      |
| UTM (or St<br>Plane) Cool | ate<br>rd. N.(X) <u>921739.6</u> E.(Y) <u>7258</u>                            | 346.6          |              | Wate<br>Durin | r Leve<br>g Drill             | el:<br>ling <u>\$</u>       | <b>720</b> . | 0 ft                  | bgs             | _ At                 | Completion <u>Y</u> ft bgs              |
| Latitude                  | 39° 57' Longitude 86° 1                                                       | <u>6 '</u>     |              |               | S                             | AM                          | PLI          | -S                    |                 |                      | PERSONNEL                               |
| Boring Loca               | ation Southern Concrete Pad Excavation Area                                   | 1              |              |               |                               | hes)                        |              |                       |                 |                      | Geologist - Steve Conway                |
| Drilling Equ              | ipment and Method <u>CME-75</u>                                               | Co T           |              | . و           | Sample Type                   | Sample<br>Recovery (inches) |              | •                     | - <del>8</del>  | guit                 | Driller - Dave Ellis<br>Helper - Justin |
|                           |                                                                               | Graphic<br>Log | (feet bgs)   | Sample No.    | aldr<br>•                     | nple<br>cover               | Op (tsf)     | N Value<br>(blows/6") | isture<br>Itent | PID Reading<br>(ppm) | Helper -                                |
| Elevation                 | DESCRIPTION OF MATERIALS                                                      | ا و ق          | å å          |               | Sar                           |                             |              |                       | <b>8</b> 5      |                      | REMARKS                                 |
|                           | POORLY GRADED SAND medium to coarse grained, medium dense, gray, trace gravel |                | <u>-</u>     | 49            | \                             | 5                           | NP           | 1/<br>18"             | -               | 3.9                  |                                         |
| 863.6                     | (SP)                                                                          |                | _ 21         |               | X                             |                             |              |                       |                 |                      |                                         |
| E                         |                                                                               |                | Ξ            |               | /                             |                             |              |                       |                 |                      |                                         |
| 862.6                     |                                                                               |                | <u> </u>     | 50            |                               | 12                          | NP           | 3<br>6                | •               | 6.0                  |                                         |
| 861.6                     |                                                                               |                | _<br>— 23    |               | ΧI                            |                             |              | 6                     | i)              |                      |                                         |
| lE I                      |                                                                               |                | =            |               | $/\backslash$                 |                             |              | 8                     |                 |                      |                                         |
| E860.6                    |                                                                               |                | 24<br>       | 51            |                               | 15                          | NP           | 3                     | -               | 8.2                  | ļ                                       |
| 859.6                     |                                                                               |                | _<br>25      |               | V                             |                             |              | 5<br>7                |                 |                      |                                         |
| E                         |                                                                               |                | _<br>_<br>_  | '             | $ \Lambda $                   |                             |              | 7                     |                 |                      |                                         |
| 858.6                     | Cc=9.0                                                                        |                | _ 26         | 52            | $\left\langle -\right\rangle$ | 13                          | NP           | 4                     |                 | 10.3                 | Grain Size Analysis                     |
| E                         | Cu = 8.0                                                                      |                | <del>-</del> |               | $  \setminus /  $             |                             |              | 8                     |                 |                      |                                         |
| 857.6                     |                                                                               |                | 27<br>       | '             | X                             |                             |              | 14                    |                 |                      |                                         |
| 856.6                     |                                                                               |                | _<br>28      |               |                               |                             |              | _                     |                 |                      |                                         |
|                           |                                                                               |                |              | 53            | $\Lambda$                     | 15                          | NP           | 10                    | -               | 2.9                  |                                         |
| 855.6                     |                                                                               |                | 29<br>       |               | X                             |                             |              | 15<br>20              |                 |                      |                                         |
| 854.6                     |                                                                               |                | _<br>30      |               | $V \setminus$                 |                             | <br>         |                       |                 | <br>                 | j                                       |
| E ****                    |                                                                               |                | _ 3C         | 54            | $\setminus$                   | 14                          | NP           | 8                     | -               | 2.9                  |                                         |
| 853.6                     |                                                                               |                | <u> </u>     |               | X                             |                             |              | 16                    |                 |                      |                                         |
|                           |                                                                               |                |              |               | $/\setminus$                  |                             |              | 18                    |                 |                      |                                         |
| 852.6                     | Grades to dense                                                               |                | <u> </u>     | 55            |                               | 18                          | NP           | 7                     | -               | 1.8                  | 1                                       |
| 851.6                     |                                                                               |                | =<br>- 33    | 3             | I V                           |                             |              | 13                    |                 |                      |                                         |
| F                         |                                                                               |                | E            |               | //                            |                             |              | 36                    |                 |                      |                                         |
| 850.6                     |                                                                               |                | F 34         | 56            |                               | 14                          | NP           | 6                     | -               | 3.4                  | -                                       |
| 849.6                     |                                                                               |                | _<br>_ 35    |               | V                             | 1                           |              | 14                    |                 |                      |                                         |
| - 543.6                   |                                                                               |                |              |               |                               |                             |              | 24                    |                 |                      |                                         |
| 848.6                     | Boring terminated at 36 feet and tremmie                                      |                | E 36         | 3├            | <u> </u>                      | -                           | -            |                       | -               | -                    | -                                       |
|                           | grouted cement-bentonite grout.                                               |                | <br>         |               |                               |                             |              |                       |                 |                      |                                         |
|                           |                                                                               |                |              |               |                               |                             |              |                       |                 |                      |                                         |
|                           |                                                                               |                |              |               |                               |                             |              |                       |                 |                      |                                         |
|                           |                                                                               |                |              |               |                               |                             |              |                       |                 |                      |                                         |
|                           |                                                                               |                |              |               |                               |                             |              |                       |                 |                      |                                         |
|                           |                                                                               |                |              |               |                               |                             |              |                       |                 |                      |                                         |

|                           | MC ENVIRONMENTAL RISK MA                                                             | NAGEMENT                                     | . '      | -ieic                   | J D                         | וווע     | ıy L           | .og               |                      | Page1 _ of2                           |
|---------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|----------|-------------------------|-----------------------------|----------|----------------|-------------------|----------------------|---------------------------------------|
|                           | 3709,001 County Boo                                                                  |                                              |          | g No.                   |                             | G-1      | 2-98           | 3                 | _ <b>M</b> o         | nitor Well No.                        |
| Project Nan               | ne Enviro-Chem Superfund Site                                                        |                                              | Site I   | Locati                  | on .                        |          | U              | IS 4:             | 21, Z                | ionsville, Indiana                    |
| Surface Ele               | vation 884.0 Completion Depth                                                        | 36.0 ft bgs                                  | Auge     | r Dep                   | th                          | 34       | ft b           | gs                | _ Rot                | ary Depth <u>ft bgs</u>               |
| Quadrangle                | Rosston Sec T                                                                        | _ R                                          | Date     | : Stan                  | ·                           | 1/2      | 8/98           | 3                 | _ Fini               | ish <u>2/1/98</u>                     |
| UTM (or St<br>Plane) Coor | ate<br>rd. N.(X) <u>921671.0</u> E.(Y) <u>725</u> 8                                  | 342.4                                        |          | r Levi<br>ig Dril       |                             | 220.     | 0 ft           | bgs               | _ At                 | Completion <u>T</u> ft bgs            |
| Latitude                  | 39° 57' Longitude 86° 1                                                              | <u>6 ·</u>                                   |          | _                       | <u> </u>                    | DI I     | <u> </u>       |                   |                      | PERSONNEL                             |
|                           | ation Southern Concrete Pad Excavation Area                                          |                                              |          | 3,                      | 8                           | <u> </u> |                |                   | <u> </u>             | Geologist - C. O'Neil                 |
|                           | ipment and Method <u>CME-75</u>                                                      | Graphic<br>Log<br>Depth<br>(feet bgs)        | <u>.</u> | Sample Type             | Sample<br>Recovery (inches) | (tsf)    | alue<br>ws/6") | sture<br>tent (%) | PID Reading<br>(ppm) |                                       |
| Elevation                 | DESCRIPTION OF MATERIALS                                                             | 1 1                                          |          | Sarr                    |                             |          |                | S S               | 5<br>9<br>9          | L                                     |
| E                         | 7" CONCRETE over limestone FILL subbase.                                             | 4.4                                          | 57       | $\backslash /$          | 15                          | 5.0<br>P | 8<br>27        | 13                | 4000                 |                                       |
| 883.0                     |                                                                                      | 1 2 2 1                                      |          | ΙXΙ                     |                             |          | 18             | ļ                 |                      |                                       |
| Ξ                         | ····                                                                                 | 17.7.                                        |          | $/\setminus$            |                             |          |                |                   |                      |                                       |
| 882.0<br>                 | LEAN CLAY FILL with Sand stiff to very stiff, brown and gray, trace gravel and brick |                                              | 58       | 17                      | 20                          | 3.7<br>B | 6<br>5         | 10                | 912                  |                                       |
| 881.0                     | fragments (CL-FILL)                                                                  | 3                                            |          | X                       |                             |          | 6              |                   |                      |                                       |
|                           |                                                                                      |                                              |          | $/\backslash$           |                             |          | 6              |                   |                      |                                       |
| 880.0                     |                                                                                      | 4                                            | 59       | (                       | 0                           | -        | -              | -                 | -                    |                                       |
| _<br>879.0                |                                                                                      | <b>5</b>                                     |          | V                       |                             |          |                |                   |                      |                                       |
| E                         |                                                                                      |                                              |          | $ /\rangle$             |                             |          |                |                   |                      |                                       |
| 878.0                     | LEAN CLAY stiff to very stiff, gray, trace                                           | 6                                            | 60       | $\langle \cdot \rangle$ | 24                          | 1.2      |                | 9                 | 0.8                  |                                       |
| E<br>877.0                | sand and gravel (CL)                                                                 | <b>///</b> 7                                 |          | IV                      |                             | В        | 5              |                   |                      |                                       |
| E ","."                   | ·                                                                                    |                                              |          | $ \Lambda $             |                             |          | 7              |                   |                      | 12" Steel Casing installed to 7 feet. |
| 876.0                     |                                                                                      | 8                                            | 82       | $\langle \cdot \rangle$ | 17                          | 3.0      | 1              | 10                | 1.1                  |                                       |
| 875.0                     |                                                                                      | 9                                            |          | IV                      |                             | В        | 3              |                   |                      |                                       |
| 8/5.0                     |                                                                                      | <b>*************************************</b> |          | Μ                       |                             |          | 5              |                   |                      | Bottom of Excavation at 875.1 +/-     |
| 874.0                     |                                                                                      | 10                                           | 83       |                         | 18                          | 2.6      | 4              | 11                | 0.5                  |                                       |
| E                         |                                                                                      |                                              |          | $\mathbb{N}$            |                             | В        | 5              |                   |                      |                                       |
| 873.0<br>                 |                                                                                      | #F 11                                        | '        | $ \Lambda $             |                             |          | 9              |                   |                      |                                       |
| 872.0                     |                                                                                      | 12                                           | 84       |                         | 18                          | 1.7      | 2              | 11                | 0                    |                                       |
|                           |                                                                                      |                                              |          | $\backslash /$          | .                           | В        | 4              | ``                |                      |                                       |
| 871.0<br>-                |                                                                                      | 13                                           | 3        | X                       |                             |          | 10             |                   |                      |                                       |
| 870.0                     | CILTY CAND to fine CAND and it and design                                            | 14                                           | 85       | <u> </u>                | 14                          | NP       | -              | 13                | 0                    |                                       |
| E !                       | SILTY SAND to fine SAND medium dense, gray (SM/SP)                                   |                                              |          | $\mathbb{N}$            | 14                          | NP       | 8              | '3                |                      |                                       |
| 869.0                     |                                                                                      | F 19                                         | 5        | X                       |                             |          | 10             |                   |                      |                                       |
| 868.0                     | LEAN CLAY                                                                            | 11                                           | 5 C      | $\bigvee$               | 1.                          | 2.       | <u> </u>       | 10                | <u> </u>             | -                                     |
| E                         | LEAN CLAY with Sand very stiff, gray (CL)                                            |                                              | 86       | 1                       | 18                          | 3.1<br>B | 6              | 10                | 0                    |                                       |
| 867.0                     |                                                                                      | 17                                           | 7        | X                       |                             |          | 6              |                   |                      |                                       |
| 866.0                     |                                                                                      | 11                                           | a        | V                       |                             |          | <u></u>        |                   |                      |                                       |
| - 800.0                   |                                                                                      | WE"                                          | 87       | 1                       | 17                          | 3.3<br>B | 2              | 10                | 0                    | }                                     |
| 865.0                     |                                                                                      | 11                                           | 9        | X                       |                             |          | 4              |                   |                      |                                       |
| E                         |                                                                                      |                                              |          | $V \setminus$           |                             |          |                |                   |                      |                                       |
|                           | VERSAR, INC.; 200 W. 22nd Stree                                                      | t: Suite 250:                                | Lomi     | hard                    | IL AC                       | 149      | : 63           | 0/26              | 8-85                 | 55                                    |

| roject Nan      | ne Enviro-Chem Superfund Site                                                 |                          | Site         | Loca                               | tion                        |          | U                     | S 4:                    | 21, Z             | ionsville, Indiana                      |
|-----------------|-------------------------------------------------------------------------------|--------------------------|--------------|------------------------------------|-----------------------------|----------|-----------------------|-------------------------|-------------------|-----------------------------------------|
| urface Ele      | evation 884.0 Completion Depth                                                | 36.0 ft bg               | s Aug        | er De                              | pth                         | 34       | ft b                  | gs                      | _ Rot             | tary Depth ft bgs                       |
| uadrangle       | Rosston Sec. T.                                                               | R.                       | Date         | e: Sta                             | rt                          | 1/2      | 8/98                  | 3                       | Fini              | ish 2/1/98                              |
| TM (or St       | ate<br>rd. N.(X) 921671.0 E.(Y) 725                                           |                          | Wat          | ter Le                             | vel:                        |          |                       |                         |                   |                                         |
|                 |                                                                               |                          |              |                                    | y <u>-</u>                  | -20.     | <u> </u>              | <u> </u>                |                   | Completion <u>T It by</u>               |
|                 | 39° 57' Longitude 86°                                                         |                          | <del>-</del> | S                                  | MA                          | PLI      | ES                    |                         |                   | PERSONNE                                |
| oring Loca      | ation Southern Concrete Pad Excavation Are                                    | a                        | -            |                                    | Sample<br>Recovery (inches) |          |                       |                         |                   | Geologist - C. O'Neil                   |
| rilling Equ     | ipment and Method <u>CME-75</u>                                               | ပ                        | (s) &        | 1 Ap                               | ح<br>ج                      |          | (_9                   | <b>%</b>                | grib              | Driller - Dave Ellis<br>Helper - Justin |
|                 | <del></del>                                                                   | Graphic<br>Log<br>Depth  | (feet bgs)   | Sample Type                        | mple<br>cover               | Op (tsf) | N Value<br>(blows/6") | Moisture<br>Content (%) | PID Reading (ppm) | Helper -                                |
| Elevation       | DESCRIPTION OF MATERIALS                                                      | Graphic<br>Log<br>(Depth | !            |                                    |                             |          | _                     |                         |                   | REMARKS                                 |
|                 | SAND medium to coarse grained, loose to medium dense, gray (SP)               | E                        | 88           |                                    | 18                          | NP       | 1 2                   | 17                      | 0                 |                                         |
| 863.0           | across Stat for t                                                             | E:                       | 21           | Ι Χ                                |                             |          | 5                     |                         |                   |                                         |
| .               |                                                                               | F                        |              | /\                                 |                             |          | 4                     |                         |                   |                                         |
| 862.0           |                                                                               |                          | 89           | +                                  | 12                          | 1.2      | 2                     | 14                      | 0                 |                                         |
| 861.0           | LEAN CLAY stiff, gray, trace sand (CL)                                        |                          | 23           | V                                  |                             | В        | 2                     |                         |                   |                                         |
| - 60 1.0  <br>- |                                                                               |                          | .5           |                                    |                             |          | 5                     |                         |                   |                                         |
| -<br>860.0      |                                                                               |                          | 24 90        | . (                                | 13                          | 0.8      | 1                     |                         | 0                 |                                         |
| -               |                                                                               |                          | "            | $\backslash \backslash \backslash$ | / '                         | В        | 2                     |                         |                   |                                         |
| 859.0           |                                                                               |                          | 25           | ΙX                                 | 1                           |          | 3                     |                         |                   |                                         |
| =               | SAND medium to coarse grained, loose to                                       |                          |              | V                                  | V                           |          |                       |                         |                   |                                         |
| -858.0          | medium dense, gray (SP)                                                       | E S                      | 26 91        | \                                  | 12                          | NP       | 4                     |                         | 0                 |                                         |
| -<br>-857.0     |                                                                               | E                        | 27           | $  \rangle$                        |                             |          | 9                     |                         |                   |                                         |
| -               |                                                                               | E                        |              | /\                                 |                             |          | 9                     |                         |                   |                                         |
| -<br>-<br>856.0 |                                                                               |                          | 28 92        | 2                                  | 20                          | NP       | 2                     |                         | 0                 | +                                       |
|                 |                                                                               |                          |              | $ \cdot $                          | '                           |          | 8                     |                         |                   | Į.                                      |
| 855.0<br>-      |                                                                               | E                        | 29           | $ \Lambda$                         |                             |          | 14                    |                         |                   |                                         |
| -<br>854.0      |                                                                               | (A)E                     | 30           | _                                  | <u>\</u>                    | 1.5      | _                     |                         |                   | -                                       |
| -               |                                                                               | E                        | 93           | ' N /                              | 21                          | NP       | 12                    |                         | 0                 | l                                       |
| -<br>-<br>853.0 |                                                                               |                          | 31           | X                                  |                             |          | 14<br>19              |                         |                   |                                         |
| -               |                                                                               | E                        |              | V                                  | $\bigvee$                   |          | '                     |                         |                   |                                         |
| 852.0           |                                                                               | <b>E</b>                 | 32 94        | 1                                  | 15                          | NP       | 4                     |                         | 0                 |                                         |
| -<br>851.0      |                                                                               | E                        | 33           | 1                                  | '   ·                       |          | 9                     |                         | Ì                 |                                         |
| <u>-</u>        |                                                                               |                          |              | /\                                 | $\backslash$                |          | 16                    |                         |                   |                                         |
| -<br>850.0      |                                                                               |                          | 34 9         | 5 (                                | 13                          | NP       | 7                     | _                       | 0                 | -                                       |
| -               |                                                                               |                          |              | $ \cdot $                          | /                           |          | 9                     |                         |                   |                                         |
| <b>84</b> 9.0   |                                                                               | F                        | 35           |                                    |                             |          | 15                    |                         |                   |                                         |
| -<br>-<br>848.0 | Being Asserting 1 200 f                                                       |                          | 36           | $\bot$                             | ¥_                          |          | _                     |                         | -                 | 1                                       |
|                 | Boring terminated at 36 feet and tremmie grouted with cement-bentonite grout. |                          |              |                                    |                             |          |                       |                         |                   |                                         |
|                 |                                                                               |                          |              |                                    |                             |          |                       |                         |                   |                                         |
|                 |                                                                               |                          |              |                                    |                             |          |                       | }                       |                   |                                         |
|                 |                                                                               |                          |              |                                    |                             |          |                       | }                       |                   |                                         |
|                 |                                                                               |                          |              |                                    |                             |          |                       |                         |                   |                                         |
|                 |                                                                               |                          |              |                                    |                             |          | 1                     |                         |                   |                                         |

| Project No.               | 3709.001 County B                                                              | oone           |                     | Boring     | No.                                |                             | G-1       | 3- <u>98</u>          | 3                       | _ Mo                 | nitor Well No            | ),                       |
|---------------------------|--------------------------------------------------------------------------------|----------------|---------------------|------------|------------------------------------|-----------------------------|-----------|-----------------------|-------------------------|----------------------|--------------------------|--------------------------|
|                           | e Enviro-Chem Superfund Site                                                   |                |                     |            |                                    |                             |           |                       |                         |                      |                          |                          |
|                           | vation 886.5 Completion Dept                                                   |                |                     |            |                                    |                             |           |                       |                         |                      |                          |                          |
|                           | Rosston Sec. T.                                                                |                |                     |            |                                    |                             |           |                       |                         |                      |                          |                          |
| JTM (or Sta               |                                                                                |                |                     | Wate       | r Leve                             | el:                         |           |                       |                         |                      |                          |                          |
|                           |                                                                                |                |                     |            |                                    |                             |           |                       |                         | - ^`<br>             |                          |                          |
|                           | 39° 57' * Longitude 86°                                                        |                |                     | <u> </u>   | S                                  | AM                          | PLI       | ES                    |                         |                      | PER                      | SONNE                    |
| Boring Loca               | ation Southern Concrete Pad Excavation Ar                                      | ea             |                     |            |                                    | Sample<br>Recovery (inches) |           |                       |                         |                      | Geologist -<br>Driller - | Steve Conw<br>Dave Ellis |
| Orilling Equi             | ipment and Method <u>CME-75</u>                                                | - [2           | c (ŝ                | Sample No. | Sample Type                        | ız (ir                      | _         | (8,                   | Moisture<br>Content (%) | PID Reading<br>(ppm) | Helper -                 | Justin                   |
| <del></del>               |                                                                                | Graphic<br>Log | Depth<br>(feet bgs) | ample      | aldwa                              | ample                       | p (tsf    | N Vatue<br>(blows/6") | oistu                   | D Re                 | Helper -                 |                          |
| Elevation                 | DESCRIPTION OF MATERIALS  LEAN CLAY FILL with Sand hard, brown                 | 0 3            | <u>Ω Ξ</u>          | 222        | Š                                  | 3 E                         | ₫<br>4.5+ | z <b>≘</b><br>5       | <b>Σ</b> ඊ              | 1.9                  |                          | MARKS                    |
| _                         | and gray (CL-FILL)                                                             |                | _                   | 222        | $\setminus / \mid$                 |                             | P         | 3                     |                         |                      |                          |                          |
| 885.5                     |                                                                                |                | - 1                 | ļi         | X                                  |                             |           | 2<br>5                |                         |                      |                          |                          |
| -<br>884.5                |                                                                                |                | _<br>2              |            | $\triangle$                        |                             |           |                       |                         |                      |                          |                          |
| - 884.5                   |                                                                                |                | - 2                 | 223        | $\setminus$ /                      | 19                          | 4.5<br>P  | 9                     | 10                      | 4.6                  |                          |                          |
| 883.5                     |                                                                                |                | <u> </u>            |            | X                                  |                             |           | 7<br>9                |                         | ļ                    |                          |                          |
| =                         |                                                                                |                | <u>-</u>            |            | $/\setminus$                       |                             |           | 9                     |                         |                      |                          |                          |
| —882.5<br>_               | LEAN CLAY with Sand, very stiff, gray (CL)                                     |                | <del>-</del> 4      | 224        | $\Box$                             | 19                          | 3.5       | 1 1                   | 10                      | 0.0                  |                          |                          |
|                           |                                                                                |                | _<br>_ 5            |            | $ \bigvee $                        |                             |           | 5<br>5                |                         |                      |                          |                          |
| = 1                       |                                                                                |                |                     |            | /                                  |                             |           | 9                     |                         |                      |                          |                          |
| 880.5                     |                                                                                |                | _ 6                 | 293        | $(\!-\!)$                          | 19                          | 2.5       | 6                     | 11                      | 0.0                  |                          |                          |
| =                         |                                                                                |                | = _                 |            | $ \bigvee $                        |                             | В         | 6<br>7                |                         |                      | }                        |                          |
| —879.5<br>—               |                                                                                |                | _ 7<br>_            |            | $ \Lambda $                        |                             |           | 10                    |                         |                      | 12" Steel C              | asing installe           |
| <br>878.5                 |                                                                                |                | _<br>_ 8            | 294        | $\langle - \rangle$                | 18                          | 2.1       | 3                     | 12                      | 0.0                  |                          |                          |
| =                         |                                                                                |                | =                   | 234        | $\backslash$                       | 10                          | B         | 3                     | '-                      | 0.0                  |                          |                          |
| 877.5                     |                                                                                |                | _ 9                 | Î          | X                                  |                             |           | 8                     |                         |                      |                          |                          |
| 876.5                     |                                                                                |                | _<br>10             |            | <u> </u>                           |                             |           |                       |                         |                      |                          |                          |
| = 370.3                   |                                                                                |                | = '0                | 295        | N /                                | 20                          | 1.7<br>B  | 3                     | 12                      | 0.0                  |                          |                          |
| 875.5                     |                                                                                |                | <u> </u>            |            | X                                  |                             |           | 5<br>6                |                         |                      |                          |                          |
|                           |                                                                                |                | =                   |            | $V \setminus$                      |                             |           |                       |                         |                      |                          |                          |
| 874.5<br>                 |                                                                                |                | — 12<br>-           | 296        | /                                  | 22                          | 1.7       | 3                     | 12                      | 0.0                  | 1                        |                          |
| 873.5                     |                                                                                |                | _<br>_ 13           | 3          | V                                  |                             | В         | 4                     | ļ                       |                      |                          |                          |
| Ē                         |                                                                                |                | Ξ                   |            | $ / \setminus$                     |                             |           | 6                     |                         |                      |                          |                          |
| 872.5                     |                                                                                |                | _<br>_ 14           | 297        | $\left\langle \cdot \right\rangle$ | 24                          | 1.2       | 1                     | 12                      | 0.0                  |                          |                          |
| 871.5                     |                                                                                |                | _<br>_<br>15        |            | V                                  |                             | В         | 2 4                   |                         |                      |                          |                          |
| -3/1.5                    | Sand lenses at 15.3 and 15.9 feet.                                             |                | _ 13                |            | $ \Lambda $                        |                             |           | 4                     |                         |                      |                          |                          |
| 870.5                     |                                                                                |                | _<br>16             | 3 298      | <del>( )</del>                     | 22                          | 0.9       | 2                     | 11                      | 0.0                  | -                        |                          |
|                           |                                                                                |                | _                   |            | $  \setminus /$                    |                             | В         | 3                     |                         |                      |                          |                          |
| 869.5<br>                 |                                                                                |                | — 17<br>=           | 7          | X                                  |                             |           | 6                     |                         |                      |                          |                          |
| -<br>-<br>-<br>-<br>868.5 |                                                                                |                | _<br>18             | 3          | $\backslash$                       | با                          | 1         | <u> </u>              | 1.0                     | 1.5                  |                          |                          |
| F                         |                                                                                |                | _<br>Ţ              | 299        | 1                                  | 18                          | NP        | 10                    | 18                      | 19                   |                          |                          |
| 867.5                     | POORLY GRADED SAND medium to coarse grained, medium dense, gray, trace gravel, |                | 19                  | 9          | X                                  |                             |           | 9                     |                         |                      |                          |                          |
| <u> </u>                  | saturated (SP)                                                                 |                | -                   | 1          | 17 \                               | 1                           | 1         | 1 13                  | 1                       | 1                    | ì                        |                          |

| WE                                                           | No. environmental risk ma                                                     | NAGEMEN                 | JT         | r          | ·ieic                 | 1 B                         | orın     | g L           | .og                     |                      | Page                  | 2 of2                |
|--------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------|------------|------------|-----------------------|-----------------------------|----------|---------------|-------------------------|----------------------|-----------------------|----------------------|
| 1                                                            | o3709.001 County Boo                                                          |                         |            | Boring     | No.                   |                             | G-1      | 3- <u>9</u> 8 | 3                       | _ Mo                 | nitor Well N          | o                    |
| Project Na                                                   | me Enviro-Chem Superfund Site                                                 |                         | _          | Site L     | ocati                 | on _                        |          | U             | S 42                    | 21, Z                | ionsville, l          | ndiana               |
| Surface E                                                    | levation 886.5 Completion Depth                                               | 24.0 ft bg:             | <u>s</u> / | Auger      | Dep                   | th                          | 22       | ft b          | gs                      | _ Rot                | ary Depth_            | ft bgs               |
| Quadrang                                                     | le Rosston Sec. T.                                                            | _ R                     | _ [        | Date:      | Start                 |                             | 2/1      | 0/98          | 3                       | _ Fini               | sh <u>2/1</u>         | 2/98                 |
| UTM (or S<br>Plane) Co                                       | State<br>ord. N.(X) <u>921820.5</u> E.(Y) <u>725</u>                          | 864.1                   | _ '        |            | r Leve<br>g Drill     |                             | 218.0    | 6 ft          | bg <u>s</u>             | _ At                 | Completion            | ▼ ft bgs             |
| Latitude_                                                    | 39° 57' "Longitude 86° 1                                                      | <u>6 ·</u>              | <u>-</u> [ |            | S                     | ΔM                          | PLE      | S             |                         |                      | PFF                   | RSONNE               |
| i                                                            | cation Southern Concrete Pad Excavation Area                                  |                         | L          |            |                       | 188)                        |          |               |                         |                      |                       | Steve Conwa          |
| Drilling Ed                                                  | uipment and Method <u>CME-75</u>                                              |                         | $\dashv$   | ا فِ       | ype<br>Y              | Sample<br>Recovery (inches) |          |               | 8                       | Bui                  | Driller -<br>Helper - | Dave Ellis<br>Justin |
| <u> </u>                                                     |                                                                               | Graphic<br>Log<br>Depth | t bgs      | Sample No. | Sample Type           | over ple                    | Op (tsf) | alue<br>ws/6  | Moisture<br>Content (%) | PID Reading<br>(ppm) | Helper -              | JU31111              |
| Elevation                                                    | DESCRIPTION OF MATERIALS                                                      |                         |            |            | San                   |                             |          |               |                         |                      | RE                    | MARKS                |
| E                                                            | POORLY GRADED SAND medium to coarse                                           | E                       |            | 300        | $\backslash / \!\! /$ | 8                           | NP       | 0             | 21                      | 11                   |                       | <del>-</del>         |
| 865.5                                                        | grained, gray (SP)                                                            |                         | 21         |            | XI                    |                             |          | 1<br>4        |                         |                      |                       |                      |
| <b>                   </b>                                   |                                                                               | WE.                     |            | - 1        | $/\ ackslash$         |                             |          | *             |                         |                      |                       |                      |
| 864.5                                                        |                                                                               | F'                      | 22         | 301        | abla                  | 8                           | NP       | 2 5           | 17                      | 0.0                  |                       |                      |
| 863.5                                                        |                                                                               |                         | 23         |            | X                     | Ì                           |          | 4             |                         |                      |                       |                      |
| \ <b> </b>                                                   |                                                                               | E.                      |            |            | $/  \bigvee$          |                             |          | 3             |                         |                      |                       |                      |
| 862.5                                                        | Boring terminated at 24 feet and tremmie grouted with cement-bentonite grout. | 1                       | 24         |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              | groated with cement-bentonite groat.                                          |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         | ]                    |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
| 11                                                           |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         | ļ                    |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
| 1                                                            |                                                                               | 1                       |            |            |                       |                             |          |               | }                       | İ                    |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      | l                     |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             | Ì        |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
| 0                                                            |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
| U A A                                                        |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
| angale D.L.E'Alput project D.Wesar project natural data Jobs |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |
|                                                              |                                                                               |                         |            |            |                       |                             |          |               |                         |                      |                       |                      |

|                                                                        | Ve          | Salinc environmental risk ma                       | NAGEMENT                | I          | Field                                        | i Bo                        | orin   | ıg L                  | .og            |                      | Page1 _ of2                                  | _        |
|------------------------------------------------------------------------|-------------|----------------------------------------------------|-------------------------|------------|----------------------------------------------|-----------------------------|--------|-----------------------|----------------|----------------------|----------------------------------------------|----------|
|                                                                        |             | 3709.001 County Boo                                |                         |            | g No.                                        |                             | G-1    | 4-98                  | 3              | _ Mo                 | nitor Well No                                |          |
| 1                                                                      |             | Enviro-Chem Superfund Site                         |                         |            |                                              |                             |        |                       |                |                      |                                              | _        |
|                                                                        | Surface Ele | vation 887.5 Completion Depth 2                    | 24.0 ft bgs             | Auge       | r Dep                                        | th                          | 22     | ft b                  | gs_            | _ Rot                | tary Depth <u>ft bgs</u>                     | _        |
|                                                                        | Quadrangle  | Rosston Sec. T.                                    | R                       | Date       | : Stari                                      |                             | 2/1    | 0/98                  | 3              | Fini                 | ish2/12/98                                   | _        |
| 1                                                                      | UTM (or Sta | ate<br>d. N.(X) <u>921818.7</u> E.(Y) <u>725</u> 8 |                         | Wate       | r Leve                                       | el:                         |        |                       |                |                      |                                              | _        |
| 1                                                                      |             | 39° 57 Longitude 86° 1                             |                         |            |                                              |                             |        |                       |                |                      | <u> </u>                                     |          |
| 1                                                                      |             | ation Southern Concrete Pad Excavation Area        |                         |            |                                              | MA<br>اق                    | PLI    | =5                    |                | Γ .                  | PERSONNEL                                    |          |
| ı                                                                      |             | ipment and Method CME-75                           |                         |            | 2                                            | Sample<br>Recovery (inches) |        | 1                     | <del>.</del>   | ga .                 | Geologist - Steve Conwa Driller - Dave Ellis | Y        |
|                                                                        | Diming Equi | ONE 75                                             | Graphic<br>Log<br>Depth | Sample No. | Sample Type                                  | Very                        | sf)    | N Value<br>(blows/6") | ture<br>ant (9 | PID Reading<br>(ppm) | Helper - Justin<br>Helper -                  |          |
| l                                                                      | Elevation   | DESCRIPTION OF MATERIALS                           | Con Gray                | Samp       | Samp                                         | Samp                        | Q<br>T | N Va<br>(blow         | Mois<br>Cont   | PIO F                | REMARKS                                      | $\dashv$ |
|                                                                        |             | SILTY CLAY FILL hard, brown (CL-ML FILL)           |                         | 219        |                                              |                             | 4.5+   | 3                     | 15             |                      |                                              | ٦        |
|                                                                        | 886.5       |                                                    | <b>1</b>                |            | V                                            |                             | Р      | 3<br>4                |                |                      |                                              |          |
|                                                                        | FΙ          |                                                    |                         |            | /                                            |                             |        | 7                     |                |                      |                                              |          |
| Ì                                                                      | 885.5       |                                                    | 2 2                     | 220        |                                              | 22                          | 5.0    |                       | 9              | 575                  |                                              |          |
|                                                                        | 884.5       | Gravel lens at 3 feet.                             | <b>%</b> 3              | ,          | $ \bigvee $                                  |                             |        | 6<br>8                |                |                      |                                              |          |
|                                                                        | F           | Graveriens at 3 reet.                              |                         |            | $ /\rangle $                                 |                             |        | 9                     |                |                      |                                              |          |
|                                                                        | 883.5       | LEAN CLAY with Sand hard, gray (CL)                | 4                       | 221        |                                              | 24                          | 5.0    |                       | 11             | 107                  |                                              | Ì        |
|                                                                        | 882.5       |                                                    | <b>1</b> 5              |            | $ \bigvee $                                  |                             |        | 7                     |                |                      |                                              |          |
|                                                                        | =           |                                                    |                         |            | $ \Lambda $                                  |                             |        | 11                    |                |                      |                                              | İ        |
|                                                                        | 881.5       |                                                    | 6                       | 238        | (-)                                          | 22                          | 4.0    | 6                     | 10             | -                    |                                              |          |
|                                                                        | 880.5       |                                                    | <b>7</b>                |            | $ \bigvee $                                  |                             |        | 10                    |                |                      |                                              |          |
|                                                                        |             |                                                    |                         |            | $ \Lambda $                                  |                             |        | 10                    |                |                      | 12" Steel Casing installed to 7 feet.        |          |
|                                                                        | 879.5       |                                                    | 8 - M                   | 239        | $\langle - \rangle$                          | 17                          | 4.5    | 3                     | 10             | -                    | -                                            |          |
|                                                                        | E           |                                                    | <b>*</b> 9              |            |                                              |                             |        | 5                     |                |                      | \$                                           |          |
|                                                                        | 878.5       |                                                    | WE 3                    | '          | $ \Lambda $                                  |                             |        | 9                     |                |                      |                                              |          |
|                                                                        | 877.5       | LEAN CLAY with Sand hard to very stiff,            | 10                      | 0 240      | $\left( \cdot \right)$                       | 18                          | 4.0    | 4                     | 9              | -                    |                                              |          |
| ١                                                                      | E           | gray (CL)                                          |                         |            | IV                                           |                             |        | 6<br>10               | l              |                      |                                              |          |
| ١                                                                      | 876.5       |                                                    | 1                       | '          | $ \Lambda $                                  |                             |        | 9                     |                |                      |                                              |          |
|                                                                        | 875.5       | Sand lens at 13 feet.                              | 1:                      | 2 241      |                                              | 24                          | 5.0    | ST                    | 8              | _                    |                                              |          |
|                                                                        | E           |                                                    | <b>///</b>              |            |                                              |                             |        |                       |                |                      |                                              |          |
|                                                                        |             | UW = 140.3 pcf SG = 2.71                           | 1                       | 3          |                                              |                             |        |                       | İ              |                      |                                              |          |
|                                                                        | 873.5       | CLAYEY SAND loose, gray (SC)                       | 1                       | 4 242      |                                              | 19                          | 3.3    | 4                     | 15             | -                    | -                                            |          |
| 3/0/2                                                                  | F           |                                                    |                         |            | V                                            |                             |        | 4 3                   |                |                      |                                              |          |
| 5                                                                      | 872.5       |                                                    | //E <sup>1</sup>        | 5          | $  \bigwedge  $                              |                             |        | 7                     |                |                      |                                              |          |
| ğ.<br>13                                                               | 871.5       | SANDY CLAY stiff, gray, trace sand and             | 1                       | 6 243      | <u>,                                    </u> | 22                          | 2.2    | 3                     | 10             | -                    | -                                            |          |
| Mar pro                                                                | E           | gravel (CLS)                                       |                         |            |                                              |                             |        | 6                     |                |                      |                                              |          |
| Š                                                                      | 870.5       |                                                    | ## 1                    | 7          | $ \lambda $                                  |                             |        | 6 7                   |                |                      |                                              |          |
| t projec                                                               | 869.5       |                                                    | 1                       | 8 244      | <u> </u>                                     | 21                          | 1.7    | 0                     | 11             | -                    | 4                                            |          |
| EA OF                                                                  | E           | LEAN CLAY with Sand stiff, gray (CL)               |                         |            | $\mathbb{N}$                                 | -                           | '''    | 3                     |                |                      |                                              |          |
| template ID:ILEPA\gint project ID:\Versar project no:\\run date:3/6/90 | 868.5       | LET IT OLEN WITH Daily Still, Slay (OL)            | 1                       | 9          | X                                            |                             |        | 5                     |                |                      |                                              |          |
| temple                                                                 | <u> </u>    | <u> </u>                                           |                         |            | <u> </u>                                     |                             |        |                       |                |                      |                                              |          |
| 1                                                                      |             | VERSAR, INC.; 200 W. 22nd Stree                    | t; Suite 250            | ; Lom      | bard,                                        | IL 60                       | 148    | : 63                  | 0/26           | 8-85                 | 55                                           |          |

| Ve           | Saling environmental risk ma                                         | NAGEMENT                | F          | ield B                                 | oring            | Log                                             | Page2_ of2_                 |
|--------------|----------------------------------------------------------------------|-------------------------|------------|----------------------------------------|------------------|-------------------------------------------------|-----------------------------|
|              | 3709.001 County Boo                                                  |                         |            | g No                                   | G-14-9           | 8 Mo                                            | onitor Well No.             |
|              | ne Enviro-Chem Superfund Site                                        |                         |            |                                        |                  |                                                 |                             |
| Surface Ele  | vation 887.5 Completion Depth                                        | 24.0 ft bgs             | Auge       | r Depth _                              | 22 ft t          | igs Ro                                          | tary Depth <u>ft bgs</u>    |
| Quadrangle   | Rosston Sec T                                                        | R                       | Date:      | Start                                  | 2/10/9           | 8 Fin                                           | nish2/12/98                 |
| UTM (or St   |                                                                      |                         | Wate       | r Level:                               |                  |                                                 |                             |
|              | 39° 57' Longitude 86° 1                                              |                         |            |                                        |                  |                                                 | PERSONNEL                   |
|              | etion Southern Concrete Pad Excavation Area                          |                         |            | 8                                      |                  | ΤТ                                              | Geologist - Steve Conway    |
| Drilling Equ | ipment and Method CME-75                                             |                         | ا ہ        | Sample Type Sample Recovery (inches)   | _                |                                                 | I = =                       |
|              |                                                                      | Graphic<br>Log<br>Depth | Sample No. | Sample Type<br>Sample<br>Recovery (inc | tsf)             | Moisture<br>Content (%)<br>PID Reading<br>(ppm) | Helper - Justin<br>Helper - |
| Elevation    | DESCRIPTION OF MATERIALS                                             | Pe Co                   | Sam        | Sam                                    | Op (tsf) N Value | S S S g                                         | REMARKS                     |
|              | LEAN CLAY with Sand stiff, gray (CL)                                 |                         | 245        |                                        | 1.7 0            | 12                                              |                             |
| 866.5        |                                                                      | 21                      |            | X                                      | 4                |                                                 | -                           |
|              |                                                                      |                         |            | /                                      | 7                |                                                 |                             |
| 865.5        | POORLY GRADED SAND medium to coarse grained, medium dense, gray (SP) | F 22                    | 246        | 15                                     | NA 6             | 7                                               | 1                           |
| 864.5        | gramed, medium dense, gray (Sr)                                      | E 23                    | 3          | ΙXΙ                                    | 6                |                                                 |                             |
|              |                                                                      | E                       |            | / \                                    | 8                |                                                 |                             |
| 863.5        | Boring terminated at 24 feet and tremmie                             | 24                      | 1          |                                        |                  | 1-1-                                            | 1                           |
|              | grouted with cement-bentonite grout.                                 |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  | }                                               |                             |
|              |                                                                      | 1                       |            |                                        | 1                | 1                                               |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      | 1                       |            |                                        | } .}             |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
| }            |                                                                      | 1                       | 1          |                                        |                  | }                                               |                             |
|              |                                                                      |                         |            | .                                      |                  |                                                 |                             |
|              |                                                                      | }                       |            |                                        |                  | 1 1                                             |                             |
|              |                                                                      |                         |            |                                        |                  | }                                               |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         | }          |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
| {            |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |
|              |                                                                      |                         |            |                                        |                  |                                                 |                             |

| VC               | MG ENVIRONMENTAL                                     | . RISK MAN          | NAGEN          | <b>MENT</b>         | •                                   | -ieic               | ים ג                        | orin      | ıg L                  | .og            |                      | Page1                    | of                       |  |
|------------------|------------------------------------------------------|---------------------|----------------|---------------------|-------------------------------------|---------------------|-----------------------------|-----------|-----------------------|----------------|----------------------|--------------------------|--------------------------|--|
|                  |                                                      |                     |                |                     | Boring No. G-15-98 Monitor Well No. |                     |                             |           |                       |                |                      |                          | ·                        |  |
| Project Nan      | ne Enviro-Chem Superfu                               | ınd Site            |                |                     | Site L                              | .ocati              | on _                        | US 421,   |                       |                |                      | , Zionsville, Indiana    |                          |  |
| Surface Ele      | vation 884.6 Comple                                  | tion Depth <u>2</u> | 4.0 ft         | bgs                 | Auge                                | r Dep               | th                          | 22        | ft b                  | gs             | _ Rot                | ary Depth _              | ft bgs                   |  |
| luadrangle       | Rosston Sec.                                         | _ τ                 | R              |                     | Date:                               | Start               | t                           | 2/1       | 1/98                  | 3              | _ Fini               | ish 2/13                 | 3/98                     |  |
| ITM (or St       | ate<br>rd. N.(X) 921739.9 E.(Y)                      |                     |                |                     | Wate                                | r Leve              | el:                         |           |                       |                |                      |                          |                          |  |
|                  |                                                      |                     |                |                     |                                     |                     |                             |           |                       | -              |                      |                          |                          |  |
|                  | 39° 57' Longitude                                    |                     |                |                     |                                     | S                   | AM                          | PLI       | ES                    |                |                      | PER                      | SONNE                    |  |
| -                | Southern Concrete Pad Excav                          | ation Area          |                |                     |                                     | o                   | Sample<br>Recovery (inches) |           |                       |                |                      | Geologist -<br>Driller - | Steve Conv<br>Dave Ellis |  |
| rilling Equ      | ipment and Method <u>CME-75</u>                      |                     | ار             | ر (sg               | 2<br>Z                              | θ Τγς               | e<br>Bry (i                 | =         | (e_)                  | ire<br>14 (%   | adin                 | Helper -                 | Justin                   |  |
|                  | DECODIDETION OF MATER                                | 51410               | Graphic<br>Log | Depth<br>(feet bgs) | Sample No.                          | Sample Type         | amp                         | t)<br>(ts | N Value<br>(blows/6") | foist.<br>onte | PID Reading<br>(ppm) | Helper -                 | NA A DICC                |  |
| Elevation        | DESCRIPTION OF MATE LEAN CLAY with Sand hard, brown, |                     |                | <u>_ = =</u>        | 229                                 |                     |                             | 4.5+      |                       | ≥ ປ<br>11      |                      |                          | MARKS                    |  |
|                  | gravel (CL)                                          | iracc               |                |                     |                                     | $\setminus / \mid$  | _ `                         | Р         | 4                     | , ,            |                      |                          |                          |  |
| -883.6           |                                                      |                     |                | 1                   |                                     | ΙXΙ                 |                             |           | 5<br>9                |                |                      |                          |                          |  |
| -882.6           |                                                      |                     |                | _<br>_<br>_ 2       |                                     | $\triangle$         |                             |           |                       |                |                      |                          |                          |  |
| 002.0            |                                                      |                     |                |                     | 230                                 | \                   | 24                          | 4.5<br>P  | 4<br>6                | 12             | 342                  | :                        |                          |  |
| -881.6           |                                                      |                     |                | 3                   |                                     | ΙΧ'                 |                             |           | 7                     |                |                      |                          |                          |  |
|                  |                                                      |                     |                | <del>-</del>        |                                     | $/ \setminus$       |                             |           | 9                     |                |                      |                          |                          |  |
| -880.6           |                                                      |                     |                | _ 4                 | 231                                 | ( )                 | 24                          | 4.5       | 4                     | 11             | 50                   |                          |                          |  |
| -879.6           |                                                      |                     |                | _<br>_<br>_ 5       |                                     | V                   |                             | Р         | 7<br>10               |                | }                    |                          |                          |  |
| -6/3.0           |                                                      |                     |                | _                   |                                     | $ \Lambda $         |                             |           | 6                     |                |                      |                          |                          |  |
| -878.6           | LEAN CLAY with Sand gray, trace gr                   | ravel               |                | _<br>6              | 247                                 | $\langle - \rangle$ | 17                          | 3.0       | 4                     | 11             |                      |                          |                          |  |
| <u>.</u>         | (CL)                                                 | avei                |                | =                   |                                     | $\setminus$         | ''                          |           | 4                     |                |                      |                          |                          |  |
| 877.6            |                                                      |                     |                | _ 7                 |                                     | X                   |                             |           | 5<br>6                |                |                      | 12" Steel Ca             | asing installe           |  |
| 876.6            |                                                      |                     |                | _<br>_<br>_ 8       |                                     | $V \setminus$       |                             |           |                       |                | _                    | to 7 feet.               |                          |  |
| -8/6.6           |                                                      |                     |                | _                   | 248                                 | \                   | 19                          | 2.1       | 3 4                   | 11             |                      |                          |                          |  |
| -<br>-875.6      |                                                      |                     |                | _ 9                 |                                     | ΙX                  |                             |           | 5                     | <u> </u>       |                      |                          |                          |  |
|                  |                                                      |                     |                | Ξ                   |                                     | $ /\rangle$         |                             |           | 5                     |                |                      |                          |                          |  |
| 874.6            | SANDY SILTY CLAY gray, trace grav                    | /el                 |                | <u> </u>            | 249                                 |                     | 24                          | 1.2       | ST                    | 12             | NP                   | LL = 17, Pl =            | : 5                      |  |
|                  | (CL-ML)                                              |                     |                | E<br>11             |                                     |                     |                             |           |                       |                |                      | 50% Sand<br>29% Silt     |                          |  |
| - 3/3.6          | UW = 144.8  pcf  SG = 2.73                           |                     |                |                     |                                     |                     |                             |           |                       |                |                      | 21% Clay                 |                          |  |
| 872.6            | Sand lenses at 11.5 and 11.8 f                       | feet                |                | 12                  | 250                                 |                     | 20                          | 1.3       | 4                     | 11             |                      | 1                        |                          |  |
| <u>-</u>         |                                                      |                     |                | _<br>_              | 1                                   | $\backslash /$      | .                           |           | 4                     | ''             |                      |                          |                          |  |
| -<br>-<br>871.6  |                                                      |                     |                | <u> </u>            |                                     | X                   |                             |           | 5                     |                |                      |                          |                          |  |
| -<br>-<br>-870.6 | Sand lens at 13.5 feet.                              |                     |                | E<br>14             |                                     | V                   |                             |           |                       |                |                      | ]                        |                          |  |
| - 0,0.0          |                                                      |                     |                | _ '~                | 251                                 | $\Lambda$ /         | 21                          | 1.7       | 1 2                   | 11             |                      | ļ                        |                          |  |
| 869.6            |                                                      |                     |                | <u> </u>            |                                     | ΙX                  |                             |           | 4                     |                |                      |                          |                          |  |
| -                | 0                                                    |                     |                | E                   |                                     | $ / \setminus$      |                             |           | 5                     |                |                      |                          |                          |  |
| —868.6<br>—      | Sand lens at 15.9 feet.                              |                     |                | <u> </u>            | 252                                 |                     | 19                          | 1.7       | 2                     |                |                      | 1                        |                          |  |
| -<br>-<br>867.6  |                                                      |                     |                | E 17                | ,                                   | $ \bigvee$          |                             |           | 3                     |                |                      |                          |                          |  |
|                  |                                                      |                     |                | Ė ''                |                                     | $ \Lambda $         |                             |           | 4                     |                |                      |                          |                          |  |
| 866.6            | SANDY CLAY stiff, gray, trace grave                  |                     |                | E 18                | 253                                 |                     | 24                          | 1.7       | 1                     | -              | <u> </u>             | 1                        |                          |  |
| -<br>-           | (CL-SC)                                              | <b>.</b>            |                | E                   |                                     | $\backslash /$      |                             |           | 1                     |                |                      |                          |                          |  |
| 865.6<br>        |                                                      |                     |                | - 19                |                                     | X                   |                             |           | 2 2                   |                |                      |                          |                          |  |
| _                | Sand lens at 19.5 feet.                              |                     |                | E                   | 1                                   | $V \setminus$       | J                           |           | }                     |                |                      |                          |                          |  |

| Ve                                                               | 1.23       | INC. ENV         | IRONMENTAL               | RISK MA     | NAGEN          | MENT                | F             | ielo               | B                           | orin     | g L            | .og              |                      | Page                  | 2 of                 | 2          |
|------------------------------------------------------------------|------------|------------------|--------------------------|-------------|----------------|---------------------|---------------|--------------------|-----------------------------|----------|----------------|------------------|----------------------|-----------------------|----------------------|------------|
|                                                                  |            |                  | County                   |             |                |                     |               | g No.              |                             | G-1      | <u>5-98</u>    | 3                | _ Moi                | nitor Well No         | o                    |            |
| Project Nar                                                      | ne         | Enviro-          | Chem Superfu             | ınd Site    |                |                     | Site L        | .ocatio            | on .                        |          | U              | S 42             | 21, Zi               | onsville, l           | ndiana               |            |
| Surface Ele                                                      | vation     | 884.6            | Comple                   | ition Depth | 24.0 ft        | bgs                 | Auge          | r Dept             | th                          | 22       | ft b           | <u> </u>         | _ Rot                | ary Depth _           | ft bg                | s          |
|                                                                  |            | n                | Sec                      | _ т         | _ R            |                     | Date:         | Start              |                             | 2/1      | 1/98           | 3                | _ Fini               | sh <u>2/1</u>         | 3/98                 |            |
| UTM (or St<br>Plane) Coo                                         |            | 921739.          | 9 E.(Y)                  | 725         | 302.2          |                     | Wate<br>Durin |                    |                             | 21.      | 5 ft           | ogs              | _ At                 | Completion            | ¥ ft                 | bgs        |
| Latitude                                                         | <u>39°</u> | 57 '             | Longitude                | 86° 1       | <u>6 ·</u>     |                     |               | S                  | ΔM                          | PLE      | S              |                  |                      | PERSONNEL             |                      |            |
| 1                                                                |            |                  | ete Pad Excav            |             |                |                     |               | 1                  | Sample<br>Recovery (inches) |          |                |                  |                      | Geologist -           | Steve Co             | nway       |
| Drilling Equ                                                     | ipment and | Method <u>CM</u> | E-75                     |             | [o             | - <del>-</del>      | ģ             | Type               | V (inc                      |          | <u>.</u>       | €                | PID Reading<br>(ppm) | Driller -<br>Helper - | Dave Elli:<br>Justin | S          |
|                                                                  |            |                  |                          |             | Graphic<br>Log | Depth<br>(feet bgs) | Sample No.    | Sample Type        | eldm<br>cove                | (tst)    | Value<br>lows/ | oistur<br>ontent | D Rea<br>pm)         | Helper -              |                      |            |
| Elevation                                                        |            |                  | OF MATE ray, trace grave |             | [5 ]           | ٥٤                  | رگ<br>254     |                    | 21                          | ð<br>1,2 | z ē            | žö               | II d                 | RE                    | MARK                 | <u>(S_</u> |
| E                                                                | (CL-SC)    | CLAT Still, g    | iay, tiace glave         | ••          |                |                     |               | $\setminus / \mid$ |                             |          | 1              |                  |                      |                       |                      |            |
| 863.6                                                            |            |                  |                          |             |                | 는 21<br>译           |               | $ \Lambda $        |                             |          | 3              |                  |                      |                       |                      |            |
| 862.6                                                            | (SC)       | SAND loose       | , gray, trace gra        | ıvel        |                | _ 22                | 255           | $\left( -\right)$  | 22                          | NP       | w              |                  |                      |                       |                      |            |
| E                                                                |            |                  |                          |             |                | Ε,                  | }             | V                  |                             |          | о<br>н         |                  |                      |                       |                      |            |
| 861.6                                                            |            |                  |                          |             |                | <u> </u>            |               | $ \Lambda $        |                             |          | • •            |                  |                      |                       |                      |            |
| 860.6                                                            | Boring to  | erminated at     | 24 feet and tre          | mmie        | 11/2           | _ 24                | -             | $\leftarrow$       |                             |          |                |                  |                      |                       |                      |            |
|                                                                  | _          |                  | bentonite grou           |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             | 1              |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  | <u> </u>   |                  |                          |             |                |                     |               |                    |                             | }        |                |                  | }                    |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  | ļ          |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      | Ì                     |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
|                                                                  |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
| 5  <br>6                                                         |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
| £                                                                |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |
| There are the Argent polect and versal polect movern one account |            |                  |                          |             |                |                     |               |                    |                             |          |                |                  |                      |                       |                      |            |

| VC                        | NO ENVIRONMENTAL RISK MA                                                        | NAGEMENT                   | Γ                                   | riel                                     | a R                         | orın  | ig L        | .og           |            | Page1 _ of2                                           |
|---------------------------|---------------------------------------------------------------------------------|----------------------------|-------------------------------------|------------------------------------------|-----------------------------|-------|-------------|---------------|------------|-------------------------------------------------------|
| Project No.               | 3709.001 CountyBoo                                                              | one                        | Boring No. G-16-98 Monitor Well No. |                                          |                             |       |             |               |            |                                                       |
| roject Nan                | ne <u>Enviro-Chem Superfund Site</u>                                            |                            | Site                                | Locat                                    | ion                         | US 42 |             |               |            | ionsville, Indiana                                    |
| urface Ele                | vation 884.8 Completion Depth                                                   | 24.0 ft bgs                | Aug                                 | er Dep                                   | th                          | 22    | ft b        | <b>3</b> 5    | _ Rot      | tary Depth <u>ft bgs</u>                              |
|                           | Rosston Sec. T.                                                                 | _ R                        |                                     |                                          |                             | 2/1   | 0/98        | 3             | _ Fin      | ish <u>2/13/98</u>                                    |
| JTM (or St<br>Plane) Coor | ate<br>rd. N.(X) <u>921672.8</u> E.(Y) <u>725</u> (                             | 303.5                      |                                     | er Lev<br>ng Dril                        |                             | Z18.  | 0 ft 1      | bgs           | _ At       | Completion <u>T</u> ft bgs                            |
| _atitude                  | 39° 57' Longitude 86° 1                                                         | 6 '                        | _                                   |                                          | Λ N./I                      | DI I  | = 0         |               |            | PERSONNEL                                             |
|                           | ation Southern Concrete Pad Excavation Area                                     |                            | -                                   |                                          | 2 1V                        |       | _3          |               |            | Geologist - Chris White                               |
|                           | ipment and Method CME-75                                                        |                            |                                     | 8                                        | (inch                       |       |             | <b>%</b>      | <u>6</u>   |                                                       |
| g                         |                                                                                 | phic th                    | Ž                                   | Sample Type                              | very                        | (sf)  | lue<br>vs/6 | ture<br>ent ( | Readi<br>( | Helper - Justin<br>Helper -                           |
| Elevation                 | DESCRIPTION OF MATERIALS                                                        | Graphic<br>Log<br>Depth    | Sample No.                          | Sam                                      | Sample<br>Recovery (inches) | Op (  | N<br>S of   | Mois<br>Cont  | PID I      | Driller - Dave Ellis Helper - Justin Helper - REMARKS |
| =                         | Crushed Limestone FILL subbase                                                  |                            | 225                                 |                                          |                             | 2.25  | 16          | 12            | 0.0        |                                                       |
|                           |                                                                                 | ₩ <b>E</b> 1               |                                     | V                                        |                             | Р     | 9<br>5      | <u> </u><br>  |            |                                                       |
| = [                       |                                                                                 |                            |                                     | $ / \rangle$                             |                             |       | 4           |               |            |                                                       |
| 882.8                     | LEAN CLAY with Sand stiff, brown to brown and gray, trace gravel and organics   | 2                          | 226                                 | $\left\langle \cdot \cdot \right\rangle$ | 14                          | 1.65  | 4           | 17            | 134        |                                                       |
| -<br>-<br>-881.8          | (CL FILL)                                                                       | <b>3</b>                   |                                     | V                                        |                             |       | 2 4         |               |            |                                                       |
| - 001.0                   |                                                                                 | <b>W</b> E 3               |                                     |                                          |                             |       | 4           |               |            |                                                       |
| 880.8                     |                                                                                 | 4                          | 227                                 | $\left\langle \cdot \right\rangle$       | 17                          | 1.0   | 2           | 17            | 1500       |                                                       |
| =                         |                                                                                 |                            |                                     | $\mathbb{N}$                             |                             | P     | 1           |               |            |                                                       |
| 879.8<br>                 | •                                                                               | 5                          | 1                                   | IX                                       |                             |       | 3           |               | :          |                                                       |
| -<br>878.8                |                                                                                 | <b>₩</b> 6                 |                                     | / \                                      |                             |       |             |               |            |                                                       |
|                           |                                                                                 |                            | 228                                 | Ί\ /                                     | 18                          | NP    | 2           | 20            | 7.0        |                                                       |
| 877.8                     | CLAYEY SAND FILL loose, brown and gray,                                         | 7                          | ·                                   | X                                        |                             |       | 3           |               |            | 12" Steel Casing installed                            |
|                           | saturated (SC-FILL)                                                             | ///F .                     |                                     | $V \setminus$                            |                             |       |             |               |            | to 7 feet.                                            |
| —876.8<br>—               | SANDY SILTY CLAY with Sand medium stiff to stiff, brown and gray mottled, trace | 8                          | 256                                 |                                          | 24                          | 0.9   | ST          | 12            | NA         | LL = 20, Pl = 5<br>47% Sand                           |
| 875.8                     | sand and gravel (CL-ML)                                                         | 9                          | )                                   |                                          |                             |       |             |               |            | 31% Silt                                              |
| = 1                       | UW = 139.9 pcf SG = 2.63<br>Sand lenses at 8.5 and 9.5 feet.                    |                            |                                     |                                          |                             |       |             |               |            | 20% Clay                                              |
| 874.8<br>                 | LEAN CLAY with Sand very stiff, gray, trace                                     | 1                          | 0 25                                | ╅╾                                       | 17                          | 2.9   | 4           | 11            | 3.3        |                                                       |
| -<br>-<br>873.8           | gravel (CL)                                                                     | 1                          | 1                                   | V                                        |                             |       | 5           |               |            |                                                       |
|                           |                                                                                 |                            |                                     | $ /\rangle$                              |                             |       | 7           |               |            |                                                       |
| -<br>872.8                |                                                                                 | 1                          | 2 258                               | 3                                        | 15                          | 2.3   | 2           | 12            | 1.4        | -                                                     |
|                           |                                                                                 | 1                          | 2                                   | V                                        |                             |       | 3           |               |            |                                                       |
| - 071.8                   | Sand lens at 13.5 feet.                                                         |                            | 3                                   |                                          |                             |       | 6           |               |            |                                                       |
| 870.8                     | Sund lens at 10.0 feet.                                                         | 1                          | 4 25                                | <del>- /</del>                           | 19                          | 2.1   | 3           | 11            | 1.4        | 4                                                     |
| <u> </u>                  |                                                                                 |                            |                                     |                                          |                             |       | 4           |               |            |                                                       |
| 869.8<br>                 |                                                                                 | 1                          | 5                                   | IÅ                                       |                             |       | 6           |               |            |                                                       |
| 868.8                     |                                                                                 | 1                          | 6 26                                | <del>\</del> \_\                         | 16                          | 2.5   | 3           | 11            | 4.3        | 4                                                     |
|                           | SANDY CLAY stiff to very stiff, trace gravel (CL-SC)                            |                            | 201                                 | 1\/                                      | ′ ′ °                       | 2.5   | 3           | '             | 4.3        |                                                       |
| 867.8                     |                                                                                 | 1                          | 7                                   | ΙX                                       |                             |       | 5           |               |            |                                                       |
| 866.8                     |                                                                                 | <u> </u>                   | 8                                   | $V^{\prime}$                             |                             | _     |             |               |            | ]                                                     |
| - 500.8  <br>-            | POORLY GRADED SAND fine to medium grained (SP)                                  |                            | 26                                  | '\\ \                                    | 21                          | NP    | 2           | 11            | 1.4        |                                                       |
| 865.8                     | g. 2.1.00 (G. )                                                                 | E <sub>1</sub>             | 9                                   | $\chi$                                   |                             |       | 3           |               |            |                                                       |
| E                         |                                                                                 | E E                        |                                     |                                          |                             |       | 3           |               |            |                                                       |
| <u> </u>                  | VERSAR, INC.; 200 W. 22nd Stree                                                 | 15.555551<br>4. Code - 252 | <br>. 1                             | l<br>be-a                                | 11 64                       | 140   |             | 0/20          | 0 05       |                                                       |

| Project No. 3709.001 County Boone Enviro-Chern Superfund Site State Location State Completion Depth 24.0 ft bgs Surface Elevation State Planck Control NIX 921672.8 E/W 725803.5 Date: State Planck Control NIX 921672.8 E/W 725803.5 Drilling Equipment and Method CME-75  Elevation DESCRIPTION OF MATERIALS Drilling Equipment and Method CME-75  Elevation DESCRIPTION OF MATERIALS Drilling Equipment and Method Gray, trace gravel (SP)  Boring terminated at 24 feet and tremmile grout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ve            | Saling environmental risk managi            | EMENT        | . F      | ield    | Bor  | ing L            | .og                     | Page2 _ of2                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------|--------------|----------|---------|------|------------------|-------------------------|----------------------------|
| Surface Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project No.   | 3709.001 County Boone                       |              | Borin    | g No    | G    | i-1 <u>6</u> -98 | <u> </u>                | onitor Well No.            |
| Quadrangle Rosston Sec. T. R. Dete: Start 2/10/98 Finish 2/13/98 Water Level: Drilling Tel. Of this part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the pa | Project Nam   | ne Enviro-Chem Superfund Site               |              | Site L   | ocatio  | n    | U                | S 421, Z                | Zionsville, Indiana        |
| UTM for State Plane (Cord N. IX) 921672.8 E.(Y) 725803.5 During Dimining 218.0 ft bgs At Completion X ft bgs Latitude 39° 57. Longitude 86° 16. SAMPLES PERSONNEL Boring Location Southern Concrete Pad Excavation Area Drilling Equipment and Method CME-75    Elevation   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIALS   DESCRIPTION OF MATERIAL | Surface Ele   | vation 884.8 Completion Depth 24.0          | ft bgs       | Auge     | r Depti | h    | 22 ft bç         | ıs Ro                   | tary Depth <u>ft bgs</u>   |
| Planel Coord, NIXI 921672.8 E.M 725803.5 During Drilling \$\frac{18.0 \text{ ft bgs}}{2}\$  Latitude 39° 57' Longitude 86° 16' SAMPLES PERSONNEL  Boring Location Southern Concrete Pad Excavation Area  Drilling Equipment and Method CME-75  Elevation DESCRIPTION OF MATERIALS  POORLY GRADED SAND (ine to medium grained, gray, trace gravel (SP)  883.8  882.8  880.8  Boring terminated at 24 feet and tremmile grout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quadrangle    | Rosston Sec T R                             |              | Date:    | Start   | 2    | /10/98           | Fir                     | nish2/13/98                |
| Boring Location Southern Concrete Pad Excavation Area  Drilling Equipment and Method CME-75  Elevation DESCRIPTION OF MATERIALS  POORLY GRADED SAND fine to medium grained, gray, trace gravel (SP)  861.8  Boring terminated at 24 feet and tremmle grouted with cement-bentonite grout.  Boring Location Southern Concrete Pad Excavation Area  Politics Southern Concrete Pad Excavation Area  Geologist - Chris White Driller - Dave Ellis Helper - Justin Helper - Justin Helper - Southern Concrete Pad Excavation Area  FEWARKS  POORLY GRADED SAND fine to medium grained, gray, trace gravel (SP)  Boring terminated at 24 feet and tremmle grouted with cement-bentonite grout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                             | 5            |          |         |      | 8.0 ft l         | ogs At                  | Completion <u>▼ ft bgs</u> |
| Boring Location Southern Concrete Pad Excavation Area  Drilling Equipment and Method CME-75    Elevation   DESCRIPTION OF MATERIALS   POORLY GRADED SAND fine to medium grained, gray, trace gravel (SP)   POORLY GRADED SAND fine to medium grained at 24 feet and tremmile grouted with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with cement-bentonite grout.   Poorly Grade with ceme | Latitude      | 39° 57' Longitude 86° 16'                   | *            | Γ        | 54      | MP   | IFS              |                         | PERSONNEL                  |
| Boring terminated at 24 feet and tremmile grouted with cement-bentonite grout.   24   19   NP   2   3   5   5   10   1   2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Boring Loca   | ation Southern Concrete Pad Excavation Area |              |          |         | S    |                  |                         | <del></del>                |
| Boring terminated at 24 feet and tremmile grouted with cement-bentonite grout.   19 NP 2 3 5 5 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drilling Equi | ipment and Method CME-75                    | <del>-</del> | <u>.</u> | ype     | (i)  |                  | € 6<br>6                | 1 -                        |
| Boring terminated at 24 feet and tremmile grouted with cement-bentonite grout.   19 NP 2 3 5 5 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | phic                                        | t bas        | N ejd    | T eld   |      | alue<br>ws/6'    | sture<br>tent (<br>Read | Helper - Justin            |
| Boring terminated at 24 feet and tremmile grouted with cement-bentonite grout.   19 NP 2 3 5 5 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Elevation     | DESCRIPTION OF MATERIALS                    |              | Sam      | Sam     | Rec  | z g              | S S S S                 | REMARKS                    |
| 863.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F             | PWW                                         | )=<br>-      | 262      | 1       | 19 N |                  | 0.4                     |                            |
| 862.8 861.8 Boring terminated at 24 feet and tremmle grouted with cement-bentonite grout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 863.8         | grained, gray, trace gravel (SP)            | E 21         |          | XI      |      | 5                |                         |                            |
| Boring terminated at 24 feet and tremmie grouted with cement-bentonite grout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E             |                                             | Œ            |          | VV      |      | 8                |                         |                            |
| Boring terminated at 24 feet and tremmie grouted with cement-bentonite grout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 862.8         |                                             | F 22         | 263      | 1       | 24 N |                  | - 2.4                   | 1                          |
| Boring terminated at 24 feet and tremmie grouted with cement-bentonite grout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 861.8         |                                             | E 23         | 3        | У       |      | 5                |                         |                            |
| grouted with cement-bentonite grout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E             |                                             | Œ            |          | /       |      | 10               |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 860.8         |                                             | 24           | ·        |         |      | +                |                         | -                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | grouted with cement-bentonite grout.        |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         | . }  |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .             |                                             |              |          |         |      | ĺ                |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                             |              |          |         |      |                  |                         |                            |

| Ve           | VCI SOI NO ENVIRONMENTAL RISK MANAGEMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |               |                               |         | Field Boring Log Page |              |                         |                      |                         |        |       | 2           |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|-------------------------------|---------|-----------------------|--------------|-------------------------|----------------------|-------------------------|--------|-------|-------------|
|              | 3709.001 County Boo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |               | g No.                         |         | G-1                   | 7-98         | 7-98 Monitor Well No    |                      |                         |        |       | <del></del> |
| Project Nan  | ne Enviro-Chem Superfund Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | Site Location |                               |         | US 42                 |              |                         |                      | 21, Zionsville, Indiana |        |       |             |
| Surface Ele  | vation 884.6 Completion Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.0 ft bgs                           | Auger Depth   |                               | th      | 22 ft bgs             |              |                         | _ Rot                | tary Depth              | f      | t bg  | s           |
| Quadrangle   | Rosston Sec. T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ R                                   | Date:         | Start                         | ·       | 2/1                   | 1/98         | 3                       | _ Fin                | ish <u>2/1</u>          | 8/98   |       |             |
| UTM (or St.  | ate<br>d. N.(X) <u>921615.0</u> E.(Y) <u>725</u> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | Wate          | r Levi                        | el:     |                       |              |                         |                      |                         |        |       |             |
| Latitude     | 39° 57' Longitude 86° 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                     |               | S                             | ΔΜ      | PI I                  | FS           |                         |                      | PF                      | RSO    | NIN   | JFI         |
|              | ation Southern Concrete Pad Excavation Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |               |                               | (8)     | <u> </u>              |              |                         |                      | Geologist               |        |       |             |
| Drilling Equ | ipment and Method <u>CME-75</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ا ا           | γpe                           | inch    |                       | -            | Moisture<br>Content (%) | .i.                  | Driller -<br>Helper -   | Davi   |       | S           |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Graphic<br>Log<br>Depth               | Sample No.    | Sample Type                   | 96<br>0 | (tst)                 | alue<br>ws/6 | sture                   | PID Reading<br>(ppm) | Helper -                | Just   | .111  |             |
| Elevation    | DECOME FIGHT OF MATTERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |               |                               |         |                       |              |                         |                      | R                       | EM/    | RK    | <u>(S</u>   |
| E            | LEAN CLAY FILL with Sand very stiff,<br>brown and gray (CL FILL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 235           |                               | 14      | .41<br>B              | -            | 23                      | NA                   |                         |        | -     |             |
| 883.6        | , (oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , oz., , | 1                                     |               | X                             |         |                       |              |                         |                      | Ì                       |        |       |             |
| E            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               | V V                           |         |                       |              |                         |                      |                         |        |       |             |
| 882.6<br>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2                                   | 236           | $\sqrt{2}$                    | 14      | 2.0<br>P              | 1 2          | 15                      | NA                   | 1                       |        |       |             |
| 881.6        | Gray staining at 3 feet and 3.9 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                     |               | X                             |         |                       | 1            |                         |                      |                         |        |       |             |
| E            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |               | $V \setminus$                 |         |                       | 4            |                         |                      |                         |        |       |             |
| 880.6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b>                               | 237           |                               | 16      | 2.8<br>B              | 2 5          | 16                      | NA                   | 1                       |        |       |             |
| 879.6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>5</b>                              |               | Х                             | j       |                       | 5            |                         |                      |                         |        |       |             |
| E            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               | $/\backslash$                 |         |                       | 7            |                         |                      |                         |        |       |             |
| 878.6        | LEAN CLAY stiff, brown and gray mottled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                     | 264           |                               | 20      | 1.3                   |              | -                       | 25                   | 1                       |        |       |             |
| 877.6        | (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                     |               | $ \chi $                      | ,       | В                     | 3            |                         |                      | 12" Steel               | Caeinn | inet  | halle       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               | /                             |         |                       | 5            |                         |                      | to 7 feet.              | Casing | 11136 | alleu       |
| 876.6        | LEAN CLAY soft to medium stiff, brown and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                     | 265           |                               | 15      | .5                    | 1            | -                       | 1000                 | 5                       |        |       |             |
| 875.6        | gray mottled (CL-ML)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 = A                                 | .             | $ \bigvee $                   |         | P                     | 2 2          |                         |                      |                         |        |       |             |
| E            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               | //                            |         |                       | 2            |                         |                      |                         |        |       |             |
| 874.6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    | 266           | $\langle \cdot \rangle$       | 13      | .5                    | 2            | +-                      | 1000                 | 5                       |        |       |             |
| 873.6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     | 1             | V                             |         | Р                     | 1 2          |                         | į                    | Sample ha               | s shee | n.    |             |
| E            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               | $   \wedge   $                |         |                       | 2            |                         |                      |                         |        |       |             |
| 872.6        | LEAN CLAY stiff to very stiff, gray, trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                    | 2 267         | $\langle \cdot \rangle$       | 24      | 1.5                   | 4            | -                       | 1000                 | 5                       |        |       |             |
| 871.6        | sand and gravel (CL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1:                                    | 3             | V                             |         | В                     | 6            |                         |                      | Sample wi               | th she | en ar | nd          |
| E            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |               | $  \wedge $                   |         | ļ                     | 7            |                         |                      | logorous.               |        |       |             |
| 870.6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                    | 4 268         | $\langle - \rangle$           | 20      | 1.2                   | 2            | -                       | 1000                 | 5                       |        |       |             |
| 869.6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5             | V                             |         | В                     | 3 4          |                         |                      |                         |        |       |             |
| 203.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ١             | $ \Lambda $                   |         |                       | 6            |                         |                      |                         |        |       |             |
| 868.6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                    | 6 269         | $\langle \cdot \rangle$       | 21      | 2.1                   | 1            | -                       | 208                  | -                       |        |       |             |
| E            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ,             | V                             |         | В                     | 3            |                         |                      |                         |        |       |             |
| —867.6<br>—  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     | 1             | $  \wedge  $                  |         |                       | 5            |                         |                      | -                       |        |       |             |
| 866.6        | Sand lens at 17.7 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                    | 8 270         | $\left\langle -\right\rangle$ | 19      | 2.2                   | 2            | <del>  _</del> -        | 158                  | 4                       |        |       |             |
| E            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ĺ             | $\mathbb{N}$                  |         | В                     | 3            |                         |                      |                         |        |       |             |
| 865.6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     | 9             | $ \dot{\Lambda} $             |         |                       | 5            |                         |                      |                         |        |       |             |
| E            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>/////</b> 2                        |               | <u> </u>                      | L       | <u></u>               |              | 1                       |                      | <u> </u>                |        |       |             |
|              | VERSAR, INC.; 200 W. 22nd Stree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t; Suite 250;                         | ; Lomi        | oard,                         | IL 60   | 148                   | 1; 63        | 0/26                    | 8-85                 | 55                      |        |       |             |

| Ve                                                                | MC ENVIRONMENTAL RISK MA                                                      | NAGEMENT                 | r *        | -ieid           | BC                          | orın      | gL   | og    |                      | Page                  | 2 of2                |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|------------|-----------------|-----------------------------|-----------|------|-------|----------------------|-----------------------|----------------------|--|
| 1                                                                 | 3709.001 County <u>Boo</u>                                                    |                          |            |                 |                             |           |      |       |                      |                       | ·                    |  |
| Project Nan                                                       | ne <u>Enviro-Chem Superfund Site</u>                                          |                          | Site L     | .ocatio         | on _                        |           | U    | S 42  | 21, Zi               | onsville, lı          | ndiana               |  |
| Surface Ele                                                       | vation 884.6 Completion Depth                                                 | 24.0 ft bgs              | Auge       | r Dept          | h                           | 22 ft bgs |      |       |                      | Rotary Depth ft bgs   |                      |  |
|                                                                   | Rosston Sec. T.                                                               | _ R                      | Date:      | Start<br>r Leve | <del></del>                 | 2/1       | 1/98 |       | _ Fini               | sh <u>2/11</u>        | 8/98                 |  |
| Plane) Cool                                                       | rd. N.(X) 921615.0 E.(Y) 7258                                                 | 319.9                    | Durin      | g Drilli        | ing 🔽                       | 20.0      | ft b | ogs   | _ At                 | Completion            | ¥ ft bgs             |  |
| Latitude                                                          | 39° 57' Longitude 86° 1                                                       | <u>6 ·</u>               |            | SA              | λM                          | PLE       | S    |       |                      | PEF                   | RSONNEL              |  |
| Boring Loca                                                       | ation Southern Concrete Pad Excavation Area                                   | <u> </u>                 |            |                 | ŝ                           |           |      |       |                      |                       | Chris White          |  |
| Drilling Equ                                                      | ipment and Method <u>CME-75</u>                                               |                          | ا و        | Sample Type     | Sample<br>Recovery (inches) | - 1       |      | €     | ling                 | Driller -<br>Helper - | Dave Ellis<br>Justin |  |
|                                                                   |                                                                               | Graphic<br>Log<br>(Depth | Sample No. | nple.           | over                        | Op (tsf)  | ws/6 | sture | PID Reading<br>(ppm) | Helper -              | Justini              |  |
| Elevation                                                         | DESCRIPTION OF MATERIALS                                                      | 2 2 5                    |            | San             | R G                         | ਰੈ        |      | ខ្ទី  |                      | RE                    | MARKS                |  |
| E                                                                 | POORLY GRADED SAND medium tto coarse grained, medium dense, gray (SP)         | E                        | 271        | $\Lambda$       | 8                           | NP        | 0    | -     | 68                   |                       | į                    |  |
| 863.6                                                             |                                                                               | <u></u> 2                | 1          | XI              |                             | l         | 2    |       |                      |                       |                      |  |
| E                                                                 |                                                                               | ₩ŧ.                      |            | VV              |                             |           |      |       |                      |                       |                      |  |
| 862.6                                                             |                                                                               | ₩E*                      | 2 272      | 1               |                             | NP        | 3 4  | -     | 1.7                  | i                     |                      |  |
| 861.6                                                             |                                                                               | 2:                       | 3          | $ \chi $        | 1                           |           | 7    |       |                      | 1                     |                      |  |
| E                                                                 |                                                                               | E.                       |            | VV              |                             |           |      |       |                      |                       |                      |  |
| 860.6                                                             | Boring terminated at 24 feet and tremmie grouted with cement-bentonite grout. | 2                        | 4          |                 |                             |           |      |       |                      |                       |                      |  |
|                                                                   | grouted with cement-pentonite grout.                                          |                          | İ          |                 |                             |           | }    |       |                      |                       | :                    |  |
|                                                                   |                                                                               |                          |            |                 |                             |           |      |       |                      |                       |                      |  |
|                                                                   |                                                                               | 1                        |            |                 |                             |           |      |       |                      |                       |                      |  |
|                                                                   |                                                                               |                          |            |                 |                             |           |      |       |                      |                       |                      |  |
|                                                                   |                                                                               | }                        |            |                 | 1                           |           |      |       |                      |                       |                      |  |
|                                                                   |                                                                               |                          |            |                 | ļ                           | }         |      |       |                      |                       | !                    |  |
|                                                                   |                                                                               |                          |            |                 | 1                           | ļ         |      |       |                      |                       | :                    |  |
|                                                                   |                                                                               |                          |            |                 | 1                           |           | Ì    |       |                      |                       |                      |  |
|                                                                   |                                                                               |                          |            |                 |                             |           |      |       |                      |                       |                      |  |
|                                                                   |                                                                               |                          |            |                 | ļ                           | į         | 1    |       |                      |                       |                      |  |
| 11                                                                |                                                                               |                          |            |                 |                             |           |      |       |                      | <u> </u>              |                      |  |
|                                                                   |                                                                               |                          |            |                 |                             | ļ         |      |       |                      |                       |                      |  |
|                                                                   |                                                                               |                          |            |                 |                             |           | ŀ    |       |                      |                       |                      |  |
|                                                                   |                                                                               |                          | 1          |                 | ĺ                           |           |      |       |                      |                       |                      |  |
| .                                                                 |                                                                               |                          | -          |                 | İ                           |           |      |       |                      | j                     |                      |  |
|                                                                   |                                                                               |                          |            |                 |                             |           |      |       |                      |                       |                      |  |
|                                                                   |                                                                               |                          |            |                 |                             |           |      |       |                      | }                     |                      |  |
|                                                                   |                                                                               |                          |            |                 |                             |           |      |       |                      |                       |                      |  |
| 3                                                                 |                                                                               | }                        |            |                 |                             |           |      |       |                      |                       |                      |  |
| And a second                                                      |                                                                               |                          |            |                 |                             |           |      |       |                      |                       |                      |  |
| iemplate DJ.EFAlgrit project DJ.Versar project notivum date. DDJs |                                                                               |                          |            |                 |                             | İ         |      |       |                      |                       |                      |  |
| PA PA                                                             |                                                                               |                          |            |                 |                             |           |      |       |                      |                       |                      |  |
|                                                                   |                                                                               |                          |            |                 |                             |           |      |       |                      |                       |                      |  |
| empla:                                                            |                                                                               |                          |            |                 |                             |           |      |       |                      |                       |                      |  |

| Ve           | Sales ENVIRONMENTAL E                                                  | RISK MAI          | NAGEI          | MENT                | F                   | Field                   | d B                         | orin                    | ng L                  | .og           |                   | Page _ 1 _ of _ 2                   |  |  |
|--------------|------------------------------------------------------------------------|-------------------|----------------|---------------------|---------------------|-------------------------|-----------------------------|-------------------------|-----------------------|---------------|-------------------|-------------------------------------|--|--|
|              | 3709.001 County                                                        |                   |                |                     |                     | g No.                   |                             | G-1                     | 8-98                  | 3             | _ Mo              | nitor Well No.                      |  |  |
| Project Nam  | neEnviro-Chem Superfun                                                 | d Site            |                |                     | Site Location US 42 |                         |                             | 21, Zionsville, Indiana |                       |               |                   |                                     |  |  |
| Surface Ele  | vation 884.4 Completic                                                 | on Depth <u>2</u> | 24.0 ft        | t bgs               | Auger Depth _       |                         |                             | 22                      | ft b                  | gs            | _ Ro1             | ary Depth <u>ft bgs</u>             |  |  |
| Quadrangle   | Rosston Sec.                                                           | т                 | _ R            |                     | Date:               | Star                    | t                           | 2/1                     | 1/98                  | 3             | _ Fini            | ish2/16/98                          |  |  |
| UTM (or Sta  | ate<br>d. N.(X) <u>921601.4</u> E.(Y)                                  |                   |                |                     | Wate                | r Lev                   | el:                         |                         |                       |               |                   |                                     |  |  |
|              | 39° 57' " Longitude 8                                                  |                   |                |                     |                     |                         |                             |                         |                       |               |                   |                                     |  |  |
|              | ition Southern Concrete Pad Excava                                     |                   |                |                     | -                   | 5                       | AIVI<br>g                   | PLI                     | <u> </u>              |               |                   | PERSONNEL  Geologist - Steve Conway |  |  |
|              | pment and Method CME-75                                                |                   |                |                     | ا . ا               | <b>e</b> d.             | Sample<br>Recovery (inches) |                         |                       | <b>%</b>      | Ş.                | Driller - Dave Ellis                |  |  |
| Drining Equi | priorit una metrioa <u>Oriz 70</u>                                     |                   | Graphic<br>Log | Depth<br>(feet bgs) | Sample No.          | Sample Type             | very                        | st)                     | N Value<br>(blows/6") | ture<br>ent ( | PID Reading (ppm) | Helper - Justin<br>Helper -         |  |  |
| Elevation    | DESCRIPTION OF MATER                                                   | IALS              | Gag<br>Gag     | Dep                 | Samp                | Samp                    | Samp                        | Qp (tsf)                | N Va                  | Mois          | PIO P             | REMARKS                             |  |  |
| E            | LEAN CLAY FILL medium stiff, brown,                                    |                   |                | <del>[</del>        | 232                 |                         | 22                          | .41                     | 1                     | 17            | 56                | TILIVI III.                         |  |  |
| 883.4        | sand and roots (CL)                                                    |                   |                | £ 1                 |                     | Y                       |                             | В                       | 1 2                   |               |                   |                                     |  |  |
| E            |                                                                        |                   |                |                     |                     | $   \wedge   $          |                             |                         | 5                     |               |                   |                                     |  |  |
| 882.4        |                                                                        |                   |                | <b>仁 2</b>          | 233                 | $\langle - \rangle$     | 8                           | 1.0                     | 2                     | 20            | 3.1               |                                     |  |  |
| 881.4        |                                                                        |                   |                | E 3                 |                     | V                       |                             | Р                       | 1 2                   |               |                   |                                     |  |  |
| E **         |                                                                        |                   |                | E,                  |                     |                         |                             |                         | 4                     |               |                   |                                     |  |  |
| 880.4        | LEAN CLAY very stiff, brown, trace sa                                  | and               |                | = 4                 | 234                 | $\langle - \rangle$     | 22                          | 3.1                     | 5                     | 12            | 0.0               |                                     |  |  |
|              | and gravel (CL)                                                        |                   |                | £ _                 |                     | $  \setminus /$         |                             | В                       | 6                     |               | }                 |                                     |  |  |
| 879.4        |                                                                        |                   |                | <b>5</b>            |                     | M                       |                             |                         | 9                     | <br>          |                   |                                     |  |  |
| 878.4        |                                                                        |                   |                | <b>E</b> 6          | 273                 | $\langle \cdot \rangle$ | 24                          | 2.6                     | 5                     | <u> </u>      | 391               |                                     |  |  |
| E            |                                                                        |                   |                | E                   | 2/3                 | $\mathbb{N}$            | 27                          | B B                     | 7                     | -             | 331               |                                     |  |  |
| 877.4        |                                                                        |                   |                | <b>₹</b> 7          |                     | ľĂ                      |                             |                         | 10                    | l<br>         |                   | 12" Steel Casing installed          |  |  |
| 876.4        | - <del> </del>                                                         | <del></del>       |                | £ 8                 | 224                 |                         |                             | 2.1                     | _                     |               | 1                 | to 7 feet.                          |  |  |
| F            | LEAN CLAY very stiff, gray, trace grav (CL)                            | vei .             |                | <b>#</b>            | 274                 | N/                      | 21                          | 2.1<br>B                | 4                     | -             | 12                |                                     |  |  |
| 875.4        |                                                                        |                   |                | £ 9                 |                     | X                       | }                           |                         | 6                     |               |                   |                                     |  |  |
| 874.4        |                                                                        |                   |                | E 10                | ,                   | V                       |                             |                         |                       |               |                   |                                     |  |  |
| E "          |                                                                        |                   |                | £ '`                | 275                 | N /                     | 21                          | 4.7<br>B                | 6                     | -             | 177               |                                     |  |  |
| 873.4        |                                                                        |                   |                | 11                  |                     | X                       |                             |                         | 8                     |               |                   |                                     |  |  |
| 872.4        | SILT medium dense, gray, trace grave                                   | I (ML)            |                | E<br>¥12            |                     | $/ \setminus$           |                             |                         |                       |               |                   |                                     |  |  |
| E 8/2.4      | POORLY GRADED SAND medium to c<br>grained, medium dense, trace gravel, | oarse             |                |                     | 276                 | \ /                     | 17                          | NP                      | 2                     | -             | 400               |                                     |  |  |
| 871.4        | saturated (SP)                                                         |                   |                | 13                  | 3                   | X                       |                             |                         | 7 8                   |               |                   |                                     |  |  |
| E            |                                                                        |                   |                | F.,                 |                     | $V \setminus$           |                             |                         |                       | }             | _                 |                                     |  |  |
| 870.4        |                                                                        |                   |                | <u> </u> 14         | 277                 | 1                       | 24                          | NP                      | 8                     | -             | 3000              |                                     |  |  |
| 869.4        |                                                                        |                   |                | E 15                | 5                   | ΙX                      |                             |                         | 12                    |               |                   |                                     |  |  |
|              |                                                                        |                   |                | E                   |                     | //                      | }                           |                         | 14                    | }             | ļ                 |                                     |  |  |
| 868.4        |                                                                        |                   |                | <del> - 16</del>    | 278                 | 1                       | 24                          | NP<br>4.0               | 10                    | -             | 3000              | 5                                   |  |  |
| 867.4        |                                                                        |                   |                | E 17                | ,                   | IX                      |                             | 4.0<br>P                | 6                     |               |                   |                                     |  |  |
|              | LEAN CLAY very stiff to hard, gray (C                                  | CL)               | 11111          | E                   |                     | //                      |                             |                         | 8                     |               |                   | 1                                   |  |  |
| 866.4        | ,                                                                      |                   |                | <del>-</del> 18     | 279                 | 1                       | 15                          | 2.2                     | 1                     | ·             | 2000              | Oily sheen on sample.               |  |  |
| 867.4<br>    |                                                                        |                   |                | £ 19                | •                   | $ \bigvee$              |                             | P                       | 4                     |               |                   |                                     |  |  |
| E            |                                                                        |                   |                | 生 (                 |                     | $ /\rangle$             |                             |                         | 6                     |               |                   |                                     |  |  |
|              | VERSAR, INC.; 200 W. 2                                                 | 2-d 64            | <u> </u>       | 250                 | <u> </u>            | <u>Y</u>                | 11 24                       | 1146                    | 1. 62                 | 0/26          | Q_0E              | <u> </u>                            |  |  |

| Ve                                                          | Sale Mc environmental risk man                                                | IAGEMENT                | . F             | ield                   | Borin                | g Log                                            |           | Page2_ of2                              |
|-------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------|-----------------|------------------------|----------------------|--------------------------------------------------|-----------|-----------------------------------------|
|                                                             | 3709.001 County Boon                                                          |                         |                 | No                     | G-1                  | 8-98                                             | _ Mo      | nitor Well No                           |
| Project Nam                                                 | ne <u>Enviro-Chem Superfund Site</u>                                          |                         | Site L          | ocation                |                      | US 4:                                            | 21, Z     | ionsville, Indiana                      |
| Surface Ele                                                 | vation 884.4 Completion Depth 2                                               | 4.0 ft bgs              | Augei           | Depth                  | 22                   | ft bgs                                           | _ Rot     | ary Depth <u>ft bgs</u>                 |
|                                                             | Rosston Sec. T.                                                               | R                       | Date:           | Start_                 | 2/1                  | 1/98_                                            | _ Fini    | ish <u>2/16/98</u>                      |
| UTM (or St.<br>Plane) Coor                                  | ate<br>d. N.(X) <u>921601.4</u> E.(Y) <u>7258</u> !                           | 51.3                    | Water<br>During | r Level:<br>g Drilling | <u> </u>             | 0 ft bgs                                         | _ At      | Completion <u>▼ ft bgs</u>              |
| Latitude                                                    | 39° 57' " Longitude 86° 16                                                    | ·                       | Г               | SA                     | MPLI                 | -S                                               |           | PERSONNEL                               |
| 1                                                           | ation Southern Concrete Pad Excavation Area                                   |                         |                 |                        | <b>S</b>             |                                                  |           | Geologist - Steve Conway                |
| Drilling Equ                                                | ipment and Method <u>CME-75</u>                                               | 0 3                     | ا و             | Sample Type<br>Sample  | (inc)                | £ 8                                              | guij      | Driller - Dave Ellis<br>Helper - Justin |
|                                                             |                                                                               | Graphic<br>Log<br>Depth | Sample No.      | Sample Type            | Recovery<br>Op (tsf) | N Value<br>(blows/6")<br>Moisture<br>Content (%) | Read<br>m | Helper - Sustin                         |
| Elevation                                                   |                                                                               | 2 2 2 8                 |                 |                        |                      |                                                  |           |                                         |
| IE I                                                        | LEAN CLAY very stiff to hard, gray (CL)                                       |                         | 280             | \ /\ '                 | 4 2.5<br>P           | 2 -                                              | 2000      | Sample with oily sheen                  |
| 863.4                                                       |                                                                               | 21                      |                 | X                      |                      | 3 6                                              |           | and strong odor.                        |
| 862.4                                                       | ·                                                                             | ///E 22                 |                 |                        |                      |                                                  |           |                                         |
| = 002.4                                                     |                                                                               | ////E **                | 281             | \                      | 6 2.5<br>P           | 3 -<br>5                                         | 9000      | Sample with sheen and                   |
| 861.4                                                       |                                                                               | 23                      | 3               | XI                     |                      | 6                                                | •         | lodor.                                  |
| 860.4                                                       |                                                                               | ///E 24                 |                 | $\triangle V_{-}$      |                      |                                                  | l<br>     |                                         |
| 860.4                                                       | Boring terminated at 24 feet and tremmie grouted with cement-bentonite grout. | 24                      |                 |                        |                      |                                                  |           |                                         |
|                                                             | ground with committee same many                                               |                         |                 |                        |                      |                                                  | 1         |                                         |
|                                                             |                                                                               |                         |                 |                        | Į                    |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
| f                                                           |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
|                                                             |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
| templete D.: ErfAgert propett DAVVERSE Project novvers care |                                                                               |                         |                 |                        |                      |                                                  |           |                                         |
| <u> </u>                                                    |                                                                               |                         |                 |                        |                      | <u> </u>                                         |           |                                         |

| Ve                       | Na environmental risk ma                            | NAGE       | MENT                | F             | iel                           | d Be                 | orir        | ıg L          | .og             |            | Page                                             | l of2_               |
|--------------------------|-----------------------------------------------------|------------|---------------------|---------------|-------------------------------|----------------------|-------------|---------------|-----------------|------------|--------------------------------------------------|----------------------|
|                          | 3709.001 County Boo                                 |            |                     |               | g No.                         |                      | G-1         | 9-98          | 3               | _ Mo       | nitor Well No                                    | . Pump Well          |
| İ                        | me Enviro-Chem Superfund Site                       |            |                     |               |                               |                      |             |               |                 |            |                                                  |                      |
| Surface Ele              | evation Completion Depth                            | 37.0 ft    | t bgs               | Auge          | r Dep                         | th                   | 35          | ft b          | gs              | _ Rot      | tary Depth _                                     | ft bgs               |
| Quadrangie               | Rosston Sec. T.                                     | _ R        |                     | Date:         | Star                          | t                    | 2/1         | 2/98          | 3               | _ Fin      | ish                                              | <del></del>          |
| UTM (or St<br>Plane) Coo | tate<br>rd. N.(X) <u>921433.4</u> E.(Y) <u>7259</u> | 907.8      |                     | Wate<br>Durin | r Lev<br>g Dril               | el:<br>ling <u>T</u> | <u>210.</u> | 0 ft          | bgs             | _ At       | Completion                                       | ▼ ft bgs             |
| Latitude                 | 39° 57' Longitude 86° 1                             | <u>6 '</u> |                     |               | S                             | ΔΜ                   | PI I        | =5            |                 |            | PEF                                              | SONNEL               |
|                          | ation Southern Concrete Pad Excavation Area         |            |                     | $\overline{}$ | - O                           | (8)                  |             |               |                 |            | Geologist -                                      | Steve Conway         |
| Drilling Equ             | ipment and Method <u>CME-75</u>                     | <u></u>    | T =                 | ا فِي         | lype                          | (inc)                |             | £.            | (%)             | <u>gri</u> | Geologist -<br>Driller -<br>Helper -<br>Helper - | Dave Ellis<br>Justin |
| ļ                        |                                                     | Graphic    | Depth<br>(feet bgs) | Sample No.    | npte                          | aple<br>oven         | (tst)       | /alue<br>ws/6 | isture<br>Itent | m)         | Helper -                                         | Justin               |
| Elevation                | DESCRIPTION OF MATERIALS                            |            |                     | Sar           | Sar                           | S &                  | ð           | N Q           | Ş<br>Co         | 문호         | RE                                               | MARKS                |
|                          | 6" CONCRETE above limestone subbase.                | 4.4.4      | Ė                   |               |                               |                      |             |               |                 |            | ļ                                                |                      |
|                          |                                                     | 4.4.       | E 1                 |               |                               |                      |             |               |                 |            |                                                  |                      |
|                          | SANDY LEAN CLAY very stiff to hard,                 |            | <u></u>             |               |                               |                      |             |               |                 | -          | į                                                |                      |
| <u> </u>                 | brown to brown and gray mottled, little gravel (CL) |            | = -                 | 222           | $\setminus$                   | 18                   | 1.75<br>P   | 5             |                 | 1.0        |                                                  |                      |
|                          | 910701 (02)                                         |            | 3                   |               | X                             |                      |             | 5<br>3        |                 |            |                                                  |                      |
| E                        |                                                     |            | E 4                 | 223           |                               | 20                   | 4.1         | 4             |                 | 1.0        |                                                  |                      |
|                          |                                                     |            | E                   | 223           | $\setminus$                   | 20                   | 4.1         | 3             |                 | 1.0        | ĺ                                                |                      |
| lE :                     |                                                     |            | 5                   |               | X                             |                      |             | 7<br>6        |                 |            |                                                  |                      |
|                          |                                                     |            | <u>‡</u> 6          | 224           |                               | 17                   | 3.72        | 3             |                 | 1.0        |                                                  |                      |
|                          |                                                     |            | =                   | 224           | $\setminus$                   | ] '                  | 3.72        | 6             |                 | 1.0        |                                                  |                      |
|                          | Grades to gray                                      |            | <del> </del> 7      |               | X                             |                      |             | 7<br>9        |                 | }          | 15" Steel C                                      | asing installed      |
|                          |                                                     |            | E 8                 | 282           |                               | 21                   | 6.77        | 3             |                 | 0.0        | to 7 feet.                                       |                      |
| IE I                     |                                                     |            | E                   |               | $  \setminus /$               |                      | В           | 6             |                 | 0.0        |                                                  |                      |
| I E                      |                                                     |            | <b>=</b> 9          | Į.            | Å                             |                      |             | 9             |                 |            |                                                  |                      |
|                          | POORLY GRADED SAND medium to coarse                 |            | <u>¥</u> 10         | 283           | ()                            | 12                   | NP          | 7             | ļ               | 0.0        | 1                                                |                      |
|                          | grained, loose, gray, trace gravel, saturated       |            | Ε                   |               | $\backslash /$                |                      |             | 5             |                 | 0.0        |                                                  |                      |
|                          | (SP)                                                |            | 11<br>              |               | M                             | :                    |             | 6             |                 | t<br>      |                                                  |                      |
| 1=                       |                                                     |            | E 12                | 284           | $\left\langle -\right\rangle$ | 12                   | NP          | 5             |                 | 0.0        | -                                                |                      |
| E                        |                                                     |            | Ė,                  | ,             | V                             |                      |             | 4 5           | t<br>           |            |                                                  |                      |
| 1E                       |                                                     |            | 13<br>              | <b>?</b>      | Μ                             |                      |             | 8             |                 |            |                                                  |                      |
|                          |                                                     |            | <u> </u> 14         | <b>↓</b>      | <u> </u>                      | ╀—                   | _           | -             |                 | -          | 4                                                |                      |
| E                        |                                                     |            | E 15                |               | <u> </u>                      |                      |             |               |                 |            |                                                  |                      |
| E                        |                                                     |            | Ε'                  | 285           | N /                           | 18                   | NP          | 1             |                 | 0.0        |                                                  |                      |
|                          |                                                     |            | E 16                | 3             | X                             |                      |             | 6<br>8        |                 |            |                                                  |                      |
| E                        |                                                     |            | E<br>E 17           | ,             | <u> </u>                      | <u> </u>             | <u> </u>    |               | <u></u>         |            | _                                                |                      |
|                          |                                                     |            | Ė.                  |               |                               |                      |             |               |                 |            |                                                  |                      |
|                          |                                                     |            | <u> </u>            | 286           |                               | 6                    | NP          | 2             | -               | 0.0        | 1                                                |                      |
| E                        |                                                     |            | E<br>- 19           | 9             | $ \bigvee$                    |                      |             | 2 2           |                 |            | }                                                |                      |
|                          |                                                     |            | E                   |               | $ /\rangle$                   |                      |             | 3             |                 |            |                                                  |                      |
| '                        | VERSAR, INC.; 200 W. 22nd Stree                     | t: Suite   | 250:                | Lomb          | ard.                          | IL 60                | 148         | : 63          | 0/26            | 8-855      | <br>55                                           |                      |

| •                          | ne Enviro-Chem Superfund Site                                                          |                |                      | Site L          | .ocati        | on _                        |             |                       | 15 4              | <u> 21, Z</u>        | ionsville, Indiana                                  |
|----------------------------|----------------------------------------------------------------------------------------|----------------|----------------------|-----------------|---------------|-----------------------------|-------------|-----------------------|-------------------|----------------------|-----------------------------------------------------|
| rface Ele                  | evation Completion Depth                                                               | 37.0 ft        | bgs                  | Auge            | г Дер         | th                          | 35          | ft b                  | gs                | _ Rot                | tary Depth ft bgs                                   |
|                            | Rosston Sec T                                                                          | _ R            |                      |                 |               |                             | 2/1         | 2/98                  | 3                 | _ Fini               | ish                                                 |
| FM (or St<br>ane) Coo      | rate<br>rd. N.(X) <u>921433.4</u> E.(Y) <u>725</u> 9                                   | 907.8          |                      | Water<br>During |               |                             | <u> 10.</u> | 0 ft                  | bgs               | _ At                 | Completion <u>▼ ft bgs</u>                          |
| titude                     | 39° 57' " Longitude 86° 1                                                              | 6 '            |                      |                 | -             | AM                          | DI I        | <u>=</u>              |                   |                      | PERSONNEL                                           |
|                            | ation Southern Concrete Pad Excavation Area                                            |                |                      | $\vdash$        |               | 8                           | <u>, L</u>  |                       |                   |                      | Geologist - Steve Conwi                             |
| illing Equ                 | sipment and Method <u>CME-75</u>                                                       | Graphic<br>Log | Depth<br>(feet bgs)  | Sample No.      | Sample Type   | Sample<br>Recovery (inches) | tsf)        | N Value<br>(blows/6") | iture<br>tent (%) | PID Reading<br>(ppm) | Driller - Dave Ellis<br>Helper - Justin<br>Helper - |
| levation                   | DESCRIPTION OF MATERIALS                                                               | Gra            | Dep<br>(feet         | Sam             | Sam           | Sam                         | ď           | N Q                   | Mois              | Or (p                | REMARKS                                             |
| -                          | POORLY GRADED SAND medium to coarse grained, loose, gray, trace gravel, saturated (SP) |                | 21                   | 287             |               |                             | NP          | 2                     |                   | 0.0                  |                                                     |
| _                          | •                                                                                      |                | 22                   |                 | $\bigvee$     |                             |             | 2<br>4<br>6           |                   |                      |                                                     |
| -                          |                                                                                        |                | 23<br>-<br>-<br>24   | 288             |               | 0                           | NP          |                       |                   | 0.0                  |                                                     |
|                            |                                                                                        |                | 25<br>- 25<br>- 26   |                 | $\bigvee$     |                             |             |                       |                   |                      |                                                     |
| -<br>-                     |                                                                                        |                | E                    | 289             | 7             | 8                           | NP          | 2 2                   |                   | 0.0                  |                                                     |
| -                          |                                                                                        |                | 28<br>-<br>29        |                 | $\bigvee$     |                             |             | 12                    |                   |                      |                                                     |
| .                          |                                                                                        |                | E                    |                 |               |                             |             |                       |                   |                      |                                                     |
| -                          | Grades to dense SAND                                                                   |                | - 30<br>- 31<br>- 31 | 290             | X             | 21                          | NP          | 2<br>12<br>23<br>24   |                   | 0.0                  |                                                     |
| •<br>-<br>•<br>•<br>•      |                                                                                        |                | 32                   | 291             |               | 20                          | NP          | 7 6 8                 | -                 | 0.0                  |                                                     |
| <del>.</del>               |                                                                                        |                | 34                   |                 | $\bigwedge$   |                             |             | 11                    |                   |                      | 1                                                   |
| -<br>-<br>-<br>-<br>-<br>- |                                                                                        |                | 35                   | 232             | X             | 14                          | NP          | 12<br>31<br>35<br>50  |                   | 0.0                  |                                                     |
| •                          | LEAN CLAY hard, gray (CL)                                                              | 11111          | ¥                    |                 | $V \setminus$ |                             |             | 30                    |                   |                      |                                                     |
| _                          | Boring terminated at 37 feet and tremmie grouted with cement-bentonite grout.          |                | 37                   |                 |               |                             |             |                       |                   |                      |                                                     |

PROJECT TITLE ENVIRO-CHEM WELL NO. PW BORING NO. PW COMPLETED 2-17-98 DATE STARTED 2-17-98 LOCATION ZIONSVILLE, IN DRILLING CONTRACTOR PHILIP ENVIRONMENTAL DRILLER DAVE ELLIS, RIG No. CME-75 METHOD HSA FLUIDS NONE GEOLOGIST STEVE CONWAY, HANDEX COMMENTS APPROXIMATE N 921,743+ E 725,917+ PROTECTIVE RISER CAP TOP OF CASING ELEVATION TBD APPROXIMATE EXISTING GROUND SURFACE EL.883.8±MSL KIKU KIKA VKIK VIKIK PLUG 15" DIA. BENTONITE/CEMENT STEEL CASING BOREHOLE DIAMETER 9 3 BENTONITE SAND - BOTTOM OF BORING WELL CONSTRUCTION NOTES: 1. TYPE RISER ABOVE W.T. 6" PVC 2. TYPE RISER BELOW W.T. 6" PVC RISER STACK MONITORING WELL 3. TYPE OF SCREEN 0.010" CONT. SLOT PVC INSTALLATION DIAGRAM 3. TYPE OF PROTECTIVE CASING STEEL 4. ELEVATION OF WATER 878.74 FT MSL. 5. WATER LEVEL READING ON 8.3 FT BELOW TOC FEB 24, 1998

#### APPENDIX C

SUMMARY OF SHALLOW SOIL TEST DATA TABLES LABORATORY TESTING SHEETS

#### ENVIRO-CHEM SUPERFUND SITE SUMMARY OF SHALLOW SOIL TEST DATA VERSAR PROJECT NO. 3709.911

#### TABLE 3 - MOISTURE (%w) and SATURATION (%S)

#### Boring No.

| Sample Depth | G-1-98    | G-2-89 | G-3-98  | G-4-98    | G-5-98 | G-6-98 | G-7-98 | G-8-98 | G-9-98  | G-10-98 | G-11-98 | G-12-98 |
|--------------|-----------|--------|---------|-----------|--------|--------|--------|--------|---------|---------|---------|---------|
| 0 - 2        | 11        | 15     | 21      | 16        | 13     | 15     | -      | 16     | -       | 13      | 21      | 13      |
| 2 - 4        | 13        | -      | 18, 93  | 16        | 14     | 11     | 16     | 20     | 11, 99  | 17      | 12      | 10      |
| 4 - 6        | 13        | 15     | 21      | 17        | 11     | 12     | 14     | 12     | 11      | 21      | 10      | -       |
| 6 - 8        | 35, 79    | 21     | 21, 100 | 39        | 11     | 13     | 11     | 13     | 11, 100 | 12      | 11      | 9       |
| 8 - 10       | 22, 122** | 25**   | 18**    | 25, 86 ** | 11, 89 | 9      | 11, 99 | 13, 95 | 12      | 9, 78   | 11      | 10      |
| 10 - 12      | 12, 29    | -      | 13, 80  | 12, 100   | 11     | 11, 99 | 9      | 11     | 11, 91  | 10      | 12, 100 | 11      |
| 12 -14       | 10        | 9, 90  | 9       | 10        | 10     | 12     | 10     | 11     | 11      | 11      | 11      | 11      |

#### Boring No.

|   | Sample Depth | G-13-98 | G-14-89 | G-15-98 | G-16-98 | G-17-98 | G-18-98 |  |
|---|--------------|---------|---------|---------|---------|---------|---------|--|
| • | 0 - 2        | 8       | 15      | 11      | 12      | _       | 17      |  |
|   | 2 - 4        | 10      | 9       | 12      | 17      | 15      | 20      |  |
|   | 4 - 6        | 10      | 11      | 11      | 17      | 16      | 12      |  |
|   | 6 - 8        | 11      | 10      | 11      | 20      | -       | -       |  |
|   | 8 - 10       | 12      | 10      | 11      | 12, 100 | -       | -       |  |
|   | 10 - 12      | 12      | 9       | 12, 100 | -       | -       | -       |  |
|   | 12 - 14      | 12      | 8, 72   | 11      | -       | _       | -       |  |

#### **Bold Results** are saturated samples.

Water Level in Creek at Elevation 877.8 ft MSL.

<sup>\* =</sup> Pending Test Results.

<sup>\*\* =</sup> Test result from same elevation as water level in creek.

#### ENVIRO-CHEM SUPERFUND SITE SUMMARY OF SHALLOW SOIL TEST DATA VERSAR PROJECT NO. 3709.911

TABLE 4 - UNCONFINED COMPRESSIVE STRENGTH DATA Q<sub>U</sub> (Tons per Square Foot, TSF)

| Sample Depth |         | Boring No. |       |           |       |       |       |       |           |       |       |       |  |  |
|--------------|---------|------------|-------|-----------|-------|-------|-------|-------|-----------|-------|-------|-------|--|--|
| 0 - 2        | 2.5 P   | 0.75B      | 1.0 P | 2.O P     | 2.0 P | •     | •     | 0.4 B | -         | -     | •     | 5.0 P |  |  |
| 2 - 4        | 2.0 P   | 1.75 P     | 1.5 P | 0.75 B    | 3.0 P | -     | 2.4 B | .33 B | 4.5 P     | 1.0 B | 3.5 P | 3.7 B |  |  |
| 4 - 6        | 2.5 P   | 1.6 B      | 2.0 P | 1.0 P     | 4.5 B | 2.4 S | 2.1 S | 3.1 B | 2.5 P     | 0.7 B | 2.0 P | •     |  |  |
| 6 - 8        | 1.5 B   | 1.4 B      | 1.9 B | 1.2 B     | 1.6 S | 2.6 B | 4.0 B | 4.5 P | 4.1 B     | 5.8 B | 1.7 B | 1.2 B |  |  |
| 8 - 10       | 1.5 P** | 0.5 P**    | NP**  | 0.3 B**   | 3.2 B | 3.0 B | 2.5 B | 3.0 B | 2.5 P, NP | P     | 2.9 B | 3.0 B |  |  |
| 10 - 12      | 6.5 S   | NP         | 4.1 B | 4.5+ P    | 3.1 B | 1.8 B | NP    | 3.0 P | NP, 2.0 B | NP    | 2.8 B | 2.6 B |  |  |
| 12 -14       | NA      | 1.O E      | 2.2 S | NP, 4.5+P | 3.5 P | 1.7 B | NP    | NP    | 1.4 B     | 3.3   | 1.3 P | 1.7 B |  |  |

| Boring No. |
|------------|
|------------|

| mple Depth | G-13-98                                               | G-14-89                                                                                   | G-15-98 | G-16-98                                                                                                                                                                                                                                                                                                | G-17-98                                                                                                                                                                                                                                                                                                                                                           | G-18-98                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 - 2      | 4.5 P                                                 | 4.5 P                                                                                     | 4.5 P   | 2.25 P                                                                                                                                                                                                                                                                                                 | .41 B                                                                                                                                                                                                                                                                                                                                                             | .41 B                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2 - 4      | 4.5 P                                                 | 5.0 B                                                                                     | 4.0 P   | 1.65 B                                                                                                                                                                                                                                                                                                 | 2.0 P                                                                                                                                                                                                                                                                                                                                                             | 1.0 P                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 - 6      | 3.5 B                                                 | 5.0 B                                                                                     | 4.5 P   | 1.0 P                                                                                                                                                                                                                                                                                                  | 2.8 P                                                                                                                                                                                                                                                                                                                                                             | 3.1 B                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6 - 8      | 2.5 B                                                 | 4.0 B                                                                                     | 3.0 B   | NP                                                                                                                                                                                                                                                                                                     | 1.3 B                                                                                                                                                                                                                                                                                                                                                             | 2.6 B                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8 - 10     | 2.1 B                                                 | 4.5 B                                                                                     | 2.1 B   | 0.9 B                                                                                                                                                                                                                                                                                                  | 0.5 P                                                                                                                                                                                                                                                                                                                                                             | 2.1 B                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10 - 12    | 1.7 B                                                 | 4.0 B                                                                                     | 1.2 B   | 2.9 B                                                                                                                                                                                                                                                                                                  | 0.5 P                                                                                                                                                                                                                                                                                                                                                             | 4.7 B                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 12 -14     | 1.7 B                                                 | 5.0 B                                                                                     | 1.3 B   | 2.3 B                                                                                                                                                                                                                                                                                                  | 1.5 B                                                                                                                                                                                                                                                                                                                                                             | NP                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 0 - 2<br>2 - 4<br>4 - 6<br>6 - 8<br>8 - 10<br>10 - 12 | 0 - 2 4.5 P<br>2 - 4 4.5 P<br>4 - 6 3.5 B<br>6 - 8 2.5 B<br>8 - 10 2.1 B<br>10 - 12 1.7 B | 0 - 2   | 0 - 2       4.5 P       4.5 P       4.5 P         2 - 4       4.5 P       5.0 B       4.0 P         4 - 6       3.5 B       5.0 B       4.5 P         6 - 8       2.5 B       4.0 B       3.0 B         8 - 10       2.1 B       4.5 B       2.1 B         10 - 12       1.7 B       4.0 B       1.2 B | 0 - 2       4.5 P       4.5 P       4.5 P       2.25 P         2 - 4       4.5 P       5.0 B       4.0 P       1.65 B         4 - 6       3.5 B       5.0 B       4.5 P       1.0 P         6 - 8       2.5 B       4.0 B       3.0 B       NP         8 - 10       2.1 B       4.5 B       2.1 B <b>0.9 B</b> 10 - 12       1.7 B       4.0 B <b>1.2 B</b> 2.9 B | 0 - 2       4.5 P       4.5 P       2.25 P       .41 B         2 - 4       4.5 P       5.0 B       4.0 P       1.65 B       2.0 P         4 - 6       3.5 B       5.0 B       4.5 P       1.0 P       2.8 P         6 - 8       2.5 B       4.0 B       3.0 B       NP       1.3 B         8 - 10       2.1 B       4.5 B       2.1 B <b>0.9 B 0.5 P</b> 10 - 12       1.7 B       4.0 B <b>1.2 B</b> 2.9 B       0.5 P |

Bold Results from Unconfined Compressive Strength Tests performed according to ASTM D2166-91.

Water Level in Creek at Elevation 877.8 ft MSL.

P = Penetrometer Test Result

B - S = Bulge or Shear failure from field Rimac Compression Test.

<sup>\* =</sup> Test result pending.

<sup>\*\* =</sup> Test result from same elevation as water level in creek.

#### ENVIRO-CHEM SUPERFUND SITE SUMMARY OF SHALLOW SOIL TEST DATA VERSAR PROJECT NO. 3709,911

TABLE 5 - UNIT WEIGHT (UW, Pounds per cubic foot, PCF) and SPECIFIC GRAVITY (SG, Unitless)

|              |            |           |              |             |           | Boring    | g No.     |                 |                |              |           |         |
|--------------|------------|-----------|--------------|-------------|-----------|-----------|-----------|-----------------|----------------|--------------|-----------|---------|
| Sample Depth | G-1-98     | G-2-89    | G-3-98       | G-4-98_     | G-5-98    | G-6-98    | G-7-98    | G-8-98          | G-9-98         | G-10-98      | G-11-98   | G-12-98 |
| 0 - 2        |            |           |              |             |           |           |           |                 |                |              |           |         |
| 2 - 4        |            |           | 131, 2.72    |             |           |           |           |                 |                |              |           |         |
| 4 - 6        | 134, 2.76  |           |              |             |           |           |           |                 |                |              |           |         |
| 6 - 8        | 128, 2.70  |           | 129, 2.64    |             |           |           | 144, 2.69 |                 |                |              |           |         |
| 8 - 10       |            |           |              | 121, 2.74   | 144, 2.80 |           |           | 144, 2.76       |                | 133, 2.75    |           |         |
| 10 - 12      | 99, 2.76** |           | 138, 2.74 ** | 147, 2.80** |           | 144, 2.67 |           |                 |                |              | 145, 2.70 |         |
| 12 -14       |            | 147, 2.75 |              |             |           |           |           |                 |                |              |           |         |
|              |            |           |              |             |           | Boring    | No.       |                 |                |              |           |         |
| Sample Depth | G-13-98    | G-14-89   | G-15-98      | G-16-98     | G-17-98   | G-18-98   |           |                 |                |              |           |         |
| 0 - 2        |            |           |              |             |           |           | Bold Res  | sults from tes  | ts on shelhy   | tube samples |           |         |
| 2 - 4        |            |           |              |             |           |           | 2014 110  |                 | 13 011 311010) | tuoo sumpios | ,,        |         |
| 4 - 6        |            |           |              |             |           |           | n - Pandi | ing test result | c              |              |           |         |
| 6 - 8        |            |           |              |             |           |           | p - rend  | ing test result | S.             |              |           |         |
| 8 - 10       |            |           |              | 140, 2.63   |           |           |           |                 |                |              |           |         |
| 10 - 12      |            |           | 145, 2.73    |             |           |           |           |                 |                |              |           |         |
| 12 - 14      |            | 140, 2.71 |              |             |           |           |           |                 |                |              |           |         |

**Bold Results** are saturated samples.

Water Level in Creek at Elevation 877.8 ft MSL.

<sup>\* =</sup> Pending Test Results.

<sup>\*\* =</sup> Test result from same elevation as water level in creek.

#### TABLE 6 - SOIL SATURATION ENVIRO-CHEM SUPERFUND SITE VERSAR PROJECT NO. 3709.911

Soil Saturation =  $S = \%M / [(Den_w/Dry Den_S)-(1/G)]$ 

Where:

%M = Moisture Content

 $Den_W = Density of Water = 62.4 lb/ft^3$ 

DUW = Dry Soil Unit Weight in lb/ft<sup>3</sup>

UW = Dry Soil Unit Weight in lb/ft3

G = Specific Gravity of Solids

| Boring # | Sample # | UW    | DUW    | G     | %M_   | DenW | Sat.      |
|----------|----------|-------|--------|-------|-------|------|-----------|
| G-1-98   | 3        | 134   | 118.58 | 2.762 | 0.13  | 62.4 | 0.7919466 |
|          | 96       | 127.6 | 93.82  | 2.696 | 0.36  | 62.4 | 1.2238301 |
|          | 98       | 99    | 90.00  | 2.764 | 0.1   | 62.4 | 0.3016238 |
| G-2-98   | 153      | 147   | 134.86 | 2.75  | 0.09  | 62.4 | 0.9085631 |
| G-3-98   | 11       | 131   | 111.02 | 2.717 | 0.18  | 62.4 | 0.9277235 |
|          | 13       | 129   | 106.61 | 2.639 | 0.21  | 62.4 | 1.0175853 |
|          | 15       | 138   | 124.32 | 2.739 | 0.11  | 62.4 | 0.8039978 |
| G-4-98   | 202      | 120.6 | 97.34  | 2.754 | 0.239 | 62.4 | 0.8598161 |
|          | 203      | 147   | 131.25 | 2.708 | 0.12  | 62.4 | 1.1304507 |
| G-5-98   | 111      | 144.2 | 129.91 | 2.804 | 0.11  | 62.4 | 0.8892518 |
| G-6-98   | 162      | 143.7 | 130.05 | 2.67  | 0.105 | 62.4 | 0.9971401 |
| G-7-98   | 139      | 143.7 | 129.46 | 2.69  | 0.11  | 62.4 | 0.9976694 |
| G-8-98   | 211      | 144.3 | 127.25 | 2.86  | 0.134 | 62.4 | 0.9521913 |
| G-9-98   | 8        | 146   | 131.53 | 2.75  | 0.11  | 62.4 | 0.9930075 |
|          | 29       | 148   | 133.33 | 2.75  | 0.11  | 62.4 | 1.054007  |
|          | 31       | 143   | 128.83 | 2.75  | 0.11  | 62.4 | 0.9111446 |
| G-10-98  | 126      | 133.1 | 117.79 | 2.75  | 0.13  | 62.4 | 0.7825163 |
| G-11-98  | 44       | 145.1 | 129.55 | 2.699 | 0.12  | 62.4 | 1.0796567 |
| G-14-98  | 241      | 140.3 | 129.91 | 2.709 | 0.08  | 62.4 | 0.7194101 |
| G-15-98  | 249      | 144.8 | 129.52 | 2.727 | 0.118 | 62.4 | 1.0253138 |
| G-16-98  | 256      | 139.9 | 124.58 | 2.632 | 0.123 | 62.4 | 1.0169011 |

Results reported in **bold** indicate soil saturation.

#### Wang Engineering, INC. Consulting Geotechnical and Environmental Engineers **ATTERBERG LIMITS (ASTM D4318)** (CL) СН 50 40 30 20 10 MH ML CL-ML 20 60 LIQUID LIMIT (LL) 80 100 40

|   | Sample No./Depth | LL | PL | PI | Fines | USCS Classification |
|---|------------------|----|----|----|-------|---------------------|
| • | G-1-98 8.0'      | 44 | 31 | 13 |       |                     |
| I | G-11-98 12.0'    | 18 | 12 | 6  |       |                     |
| 4 | G-15-98 12.0′    | 17 | 12 | 5  |       |                     |
| * | G-16-98 10.0′    | 20 | 15 | 5  |       |                     |
|   | G-4-98 10.0'     | 29 | 21 | 9  |       |                     |
| 0 | G-7-98 11.0'     | 16 | 12 | 4  |       |                     |
| T |                  |    |    |    |       |                     |
|   |                  |    |    |    |       |                     |
|   | _                |    |    |    |       |                     |
|   |                  |    |    |    |       |                     |
|   |                  |    |    |    |       |                     |
|   |                  |    |    |    |       |                     |
|   |                  |    |    |    |       |                     |
|   |                  |    |    |    |       |                     |
|   |                  |    |    |    |       |                     |
|   |                  |    |    |    |       |                     |

| Client      | Versar, Inc.       |                             |         |
|-------------|--------------------|-----------------------------|---------|
| Project     | Envirochem Site    | Prepared by                 |         |
| Location    | Zionville, Indiana | Date                        | 3/3/98  |
| Project No. | 990-62-01          | $\mathcal{O}_{\mathcal{I}}$ | 7 7 ~ 1 |
|             |                    | Checked by Walle            | T. tand |
|             |                    | Date                        | 3/3/98  |

GRAVEL

fine

coarse

coarse

COBBLES

Wang Engineering, INC.
Consulting Geotsohrical and
Environmental Engineers

SILT or CLAY



|                                                    | 0.96 7 | 0     |     |      |    |         | SP  | GRAVEL | SAND with | GRADED       | POORLY | 18.0′ | G-2-98      | •  |
|----------------------------------------------------|--------|-------|-----|------|----|---------|-----|--------|-----------|--------------|--------|-------|-------------|----|
|                                                    |        |       | L., | Ì    |    |         |     |        |           |              |        | ]     |             | ]  |
| G-2-98 18.0' 19.00 1.97 0.705 0.2614 20.6 78.8 0 6 | %Cla   | %Silt | %5  | Sand | %S | 6Gravel | 7 9 | D10    | D30       | D60          | D100   | Depth | imple No./  | Se |
|                                                    | 6      | 0     |     | 8.8  | 78 | 20.6    | 1   | 0.2614 | 0.705     | 1.97         | 19.00  | 18.0′ | G-2-98      | •  |
|                                                    |        |       | %8  |      |    |         | 9   |        |           | <del> </del> |        |       | <del></del> | Sa |

SAND

fine

medium

| Client      | Versar, Inc.       |                                       |
|-------------|--------------------|---------------------------------------|
| Project     | Envirochem Site    | Prepared by                           |
| Location    | Zionville, Indiana | Date 2/23/98                          |
| Project No. | 990-62-01          | (Pr. 7 Fax-2                          |
|             |                    | Checked by 01/07. 74172  Date 2/25/98 |





|                  | OBBLES                    | GRA                 | .VEL |  | SAND |     |    | SILT or CLAY |    |    |    |
|------------------|---------------------------|---------------------|------|--|------|-----|----|--------------|----|----|----|
|                  | coarse fine coarse medium |                     |      |  |      |     |    | LAT          |    |    |    |
|                  |                           | <u></u>             |      |  |      |     |    |              |    |    |    |
| Sample No./Depth |                           | USCS Classification |      |  |      | MC% | LL | PL           | PI | Сс | Cu |

| • | G-4-98      | 10.0  | CLAYEY | SAND SC |       |     |        | 29  | 21   | 9     |       |
|---|-------------|-------|--------|---------|-------|-----|--------|-----|------|-------|-------|
|   |             |       |        |         |       |     |        |     |      |       |       |
|   |             |       |        |         |       |     | -      |     |      |       |       |
| S | ample No./I | Depth | D100   | D60     | D30   | D10 | %Grave | 1 % | Sand | %Silt | %Clay |
| P | G-4-98      | 10.0′ | 9.50   | 0.79    | 0.012 |     | 4.4    | 4   | 6.9  | 28.7  | 20.0  |
|   |             |       |        |         |       |     |        |     |      |       |       |
|   |             |       |        |         |       |     |        |     |      | ····  |       |
| ١ |             | 1     |        | Ì       |       |     |        |     |      |       | 1     |

| Client      | Versar, Inc.       | 1//                                                                       |
|-------------|--------------------|---------------------------------------------------------------------------|
| Project     | Envirochem Site    | Prepared by YZ                                                            |
| Location    | Zionville, Indiana | Date 3/4/58                                                               |
| Project No. | 990-62-01          | $\int_{\Omega} \int_{\Omega} dx  dx = \int_{\Omega} \int_{\Omega} dx  dx$ |
|             |                    | Checked by COFILE 1. Faity                                                |
|             |                    | Date 3/1/99                                                               |

GRAVEL

fine

coarse

coarse

**COBBLES** 



SILT or CLAY



| 98 24.0′  | POORLY POORLY |          |         |        |         |      |    |       | 0.90 | 7.8  |
|-----------|---------------|----------|---------|--------|---------|------|----|-------|------|------|
|           |               | GRADED S | SAND SP |        |         |      |    |       | 0.49 | 7.8  |
|           |               | ,        |         |        |         |      |    |       |      |      |
| No./Depth | D100          | D60      | D30     | D10    | %Gravel | %San | nd | %Silt | %    | Clay |
| -98 28.0  | ′ 19.00       | 1.37     | 0.459   | 0.1705 | 11.9    | 84.5 | 5  |       | 3 6  |      |
| 98 24.0′  | 19.00         | 1.27     | 0.317   | 0.1620 | 9.5     | 86.5 | 5  |       | 40   |      |
| _         |               |          |         |        |         |      |    |       |      |      |

SAND

medium

fine

| Client      | Versar, Inc.       |                          |
|-------------|--------------------|--------------------------|
| Project     | Envirochem Site    | Prepared by              |
| Location    | Zionville, Indiana | Date 2/10/98             |
| Project No. | 990-62-01          |                          |
|             |                    | Checked by Wolm 1- Fan 1 |
|             |                    | Date 2/10/93             |
|             |                    |                          |

Wang Engineering, INC.
Consulting Geotechnical and
Environmental Engineers



| COBBLES | GRA    | VEL  |        | SAND   | )    | SILT or CLAY |
|---------|--------|------|--------|--------|------|--------------|
| COBBLES | coarse | fine | coarse | medium | fine | SIET OF CEAT |

| Sample No./Depth |         | USCS C    | lassification |     | MC%          | LL           | PL  | PI    | Сс | Cu    |
|------------------|---------|-----------|---------------|-----|--------------|--------------|-----|-------|----|-------|
| G-15-98 12.0     | SANDY S | SILTY CLA | Y CL-ML       |     |              | 17           | 12  | 5     |    | ļ     |
|                  | -       |           |               |     |              |              |     |       |    | (0)   |
| Sample No./Depth | D100    | D60       | D30           | D10 | %Gravel      | %S           | and | %Silt |    | 6Clay |
| G-15-98 12.0     | 2.36    | 0.19      | 0.013         |     | 0.0          | 49           | 0.5 | 29.1  |    | 21.4  |
|                  |         |           |               |     | <del> </del> | <del> </del> |     |       |    |       |
| 1 1              |         |           |               |     |              |              |     |       |    |       |

| Client      | Versar, Inc.       |   |
|-------------|--------------------|---|
| Project     | Envirochem Site    | Ρ |
| Location    | Zionville, Indiana |   |
| Project No. | 990-62-01          |   |
|             |                    | _ |

Prepared by YC

Date 3/4/98

Checked by Crow T. Far 1

Date 3/4/23

Wang Engineering, INC.
Consulting Geotechnical and
Environmental Engineers



| COBBLES | GRA    | VEL  |        | SAND   | )    | SILT or CLAY |
|---------|--------|------|--------|--------|------|--------------|
| COBBLES | coarse | fine | coarse | medium | fine | SILT OF CLAT |

| Sample No./Depth D100 D60 D30 D10 %Gravel %Sand %Silt %0 | S | ample No./Depth |          | uscs c    | lassification |     | MC%     | LL | PL  | PI    | Сс | Cu    |
|----------------------------------------------------------|---|-----------------|----------|-----------|---------------|-----|---------|----|-----|-------|----|-------|
|                                                          | • | G-16-98 10.0    | 'SANDY S | SILTY CLA | Y CL-ML       |     |         | 20 | 15  | 5     |    |       |
| • G-16-98 10.0' 9.50 0.19 0.014 2.7 46.7 30.7 19         | s | ample No./Depth | D100     | D60       | D30           | D10 | %Gravel | %S | and | %Silt | 9/ | 6Clay |
|                                                          | • | G-16-98 10.0    | ′ 9.50   | 0.19      | 0.014         |     | 2.7     | 46 | 5.7 | 30.7  |    | 19.9  |
|                                                          |   |                 |          | ]         | 1             |     |         |    |     |       |    |       |

| Client      | Versar, Inc.       |
|-------------|--------------------|
| Project     | Envirochem Site    |
| Location    | Zionville, Indiana |
| Project No. | 990-62-01          |

Prepared by YC

Date 3/4/98

Checked by Corke 7. Fant 1

Date 3/5/98

| _        | 990-62-01<br>e Envirochem  | Boring No.<br>Sample No.        | G-4-98<br>202 |
|----------|----------------------------|---------------------------------|---------------|
| Client   | Versar, Inc.               | Depth                           | 8-10 Feet     |
| Diameter | 2.85 in                    | Proving Ring                    | 21579         |
| Height   | 4.675 in                   | Proving Ring Calibration Factor | 2.1           |
| Area     | 6.3761625 in <sup>2</sup>  | Moisture Content                | 23.9 %        |
| Volume   | 0.01725032 ft <sup>3</sup> | Unit Weight                     | 120.6 pcf     |
| Weight   | 2.08 lbs                   | Dry Unit Weight                 | 97.3 pcf      |
|          |                            | Specific Gravity                | 2.754         |
|          |                            | Void Ratio                      | 0.77          |

Degree of Saturation

86 %

| Elapse Time | Load Dial | Axial Load | Total Strain | Corrected Area | Unit Strain | Stress |
|-------------|-----------|------------|--------------|----------------|-------------|--------|
|             | in 10E-04 | PSF        |              | in²            | (%)         | psf    |
|             | 0         | 0          | 0            | 0              | 0           | 0      |
|             | 3         | 6.3        | 0.04675      | 6.44           | 1.0         | 141    |
|             | 5         | 10.5       | 0.0935       | 6.51           | 2.0         | 232    |
|             | 8         | 16.8       | 0.14025      | 6.57           | 3.0         | 368    |
|             | 10        | 21         | 0.187        | 6.64           | 4.0         | 455    |
|             | 12        | 25.2       | 0.23375      | 6.71           | 5.0         | 541    |
|             | 13        | 27.3       | 0.2805       | 6.78           | 6.0         | 580    |
|             | 13        | 27.3       | 0.32725      | 6.86           | 7.0         | 573    |
|             | 14        | 29.4       | 0.374        | 6.93           | 8.0         | 611    |
|             | 14        | 29.4       | 0.4675       | 7.08           | 10.0        | 598    |
|             | 14        | 29.4       | 0.561        | 7.25           | 12.0        | 584    |
|             | 14        | 29.4       | 0.6545       | 7.41           | 14.0        | 571    |

Project No.990-62-01Boring No.G-5-98Project NameEnvirochemSample No.111ClientVersar, Inc.Depth8-10 Feet

Diameter 2.877 in **Proving Ring** 21579 Height 2.1 6.08 in **Proving Ring Calibration Factor** 6.49754627 in<sup>2</sup> Area **Moisture Content** 9 % 0.02286174 ft<sup>3</sup> 144.2 pcf Volume **Unit Weight** Weight 3.296 lbs Dry Unit Weight 132.3 pcf Specific Gravity 2.804 Void Ratio 0.32 Degree of Saturation 78 %

| Elapse Time | Load Dial | Axial Load | Total Strain | Corrected Area | Unit Strain | Stress |
|-------------|-----------|------------|--------------|----------------|-------------|--------|
|             | in 10E-04 | PSF        |              | in²            | (%)         | psf    |
|             | 0         | 0          | 0            | 0              | 0           | 0      |
|             | 44        | 92.4       | 0.0608       | 6.56           | 1.0         | 2027   |
|             | 62        | 130.2      | 0.1216       | 6.63           | 2.0         | 2828   |
|             | 73        | 153.3      | 0.1824       | 6.70           | 3.0         | 3296   |
|             | 91        | 191.1      | 0.2432       | 6.77           | 4.0         | 4066   |
|             | 104       | 218.4      | 0.304        | 6.84           | 5.0         | 4598   |
|             | 114       | 239.4      | 0.3648       | 6.91           | 6.0         | 4987   |
|             | 126       | 264.6      | 0.4256       | 6.99           | 7.0         | 5454   |
|             | 133       | 279.3      | 0.4864       | 7.06           | 8.0         | 5695   |
|             | 145       | 304.5      | 0.608        | 7.22           | 10.0        | 6074   |
|             | 156       | 327.6      | 0.7296       | 7.38           | 12.0        | 6389   |
|             | 159       | 333.9      | 0.8512       | 7.56           | 14.0        | 6364   |
|             | 154       | 323.4      | 0.9728       | 7.74           | 16.0        | 6020   |
|             | 154       | 323.4      | 1.0944       | 7.92           | 18.0        | 5877   |

| Project No. | 990-62-01                  | Boring No.                      | G-6-98    |
|-------------|----------------------------|---------------------------------|-----------|
| Project Nan | ne Envirochem              | Sample No.                      | 162       |
| Client      | Versar, Inc.               | Depth                           | 10'-12'   |
| Diameter    | 2.873 in                   | Proving Ring                    | 21579     |
| Height      | 5.916 in                   | Proving Ring Calibration Factor | 2.1       |
| Area        | 6.47949127 in <sup>2</sup> | Moisture Content                | 10.5 %    |
| Volume      | 0.02218326 ft <sup>3</sup> | Unit Weight                     | 143.7 pcf |
| Weight      | 3.187 lbs                  | Dry Unit Weight                 | 130.0 pcf |
|             |                            | Specific Gravity                | 2.669     |
|             |                            | Void Ratio                      | 0.28      |
|             |                            | Degree of Saturation            | 100 %     |
|             |                            |                                 |           |

| Elapse Time | Load Dial | Axial Load | Total Strain | Corrected Area | Unit Strain | Stress |  |
|-------------|-----------|------------|--------------|----------------|-------------|--------|--|
|             | in 10E-04 | PSF        |              | in²            | (%)         | psf    |  |
|             | 0         | 0          | 0            | 0              | 0           | 0      |  |
|             | 15        | 31.5       | 0.05916      | 6.54           | 1.0         | 693    |  |
|             | 24        | 50.4       | 0.11832      | 6.61           | 2.0         | 1098   |  |
|             | 35        | 73.5       | 0.17748      | 6.68           | 3.0         | 1584   |  |
|             | 44        | 92.4       | 0.23664      | 6.75           | 4.0         | 1971   |  |
|             | 51        | 107.1      | 0.2958       | 6.82           | 5.0         | 2261   |  |
|             | 59        | 123.9      | 0.35496      | 6.89           | 6.0         | 2588   |  |
|             | 64        | 134.4      | 0.41412      | 6.97           | 7.0         | 2778   |  |
|             | 69        | 144.9      | 0.47328      | 7.04           | 8.0         | 2963   |  |
|             | 87        | 182.7      | 0.5916       | 7.20           | 10.0        | 3654   |  |
|             | 88        | 184.8      | 0.70992      | 7.36           | 12.0        | 3614   |  |
|             | 89        | 186.9      | 0.82824      | 7.53           | 14.0        | 3572   |  |
|             | 92        | 193.2      | 0.94656      | 7.71           | 16.0        | 3607   |  |
|             | 92        | 193.2      | 1.06488      | 7.90           | · 18.0      | 3521   |  |

STRESS - STRAIN CURVE Envirochem Site Boring G-6-98 S-16 (10'-12')



| Project No.<br>Project Nam | 990-62-01<br>e Envirochem  | Boring No.<br>Sample No.        | G-7-98<br>139 |
|----------------------------|----------------------------|---------------------------------|---------------|
| Client Versar, Inc.        |                            | Depth                           | 8-10 Feet     |
|                            |                            |                                 |               |
| Diameter                   | 2.873 in                   | Proving Ring                    | 21579         |
| Height                     | 6.077 in                   | Proving Ring Calibration Factor | 2.1           |
| Area                       | 6.47949127 in <sup>2</sup> | Moisture Content                | 8 %           |
| Volume                     | 0.02278696 ft <sup>3</sup> | Unit Weight                     | 143.7 pcf     |
| Weight                     | 3.274 lbs                  | Dry Unit Weight                 | 133.0 pcf     |

3.274 lbs

Dry Unit Weight
Specific Gravity
2.692
Void Ratio
Degree of Saturation
82 %

| Elapse Time | Load Dial | Axial Load | Total Strain | Corrected Area | Unit Strain | Stress |
|-------------|-----------|------------|--------------|----------------|-------------|--------|
|             | in 10E-04 | PSF        |              | in²            | (%)         | psf    |
|             | 0         | 0          | 0            | 0              | 0           | 0      |
|             | 14        | 29.4       | 0.06077      | 6.54           | 1.0         | 647    |
|             | 42        | 88.2       | 0.12154      | 6.61           | 2.0         | 1921   |
|             | 68        | 142.8      | 0.18231      | 6.68           | 3.0         | 3078   |
|             | 76        | 159.6      | 0.24308      | 6.75           | 4.0         | 3405   |
|             | 92        | 193.2      | 0.30385      | 6.82           | 5.0         | 4079   |
|             | 98        | 205.8      | 0.36462      | 6.89           | 6.0         | 4299   |
|             | 121       | 254.1      | 0.42539      | 6.97           | 7.0         | 5252   |
|             | 138       | 289.8      | 0.48616      | 7.04           | 8.0         | 5925   |
|             | 182       | 382.2      | 0.6077       | 7.20           | 10.0        | 7645   |
|             | 195       | 409.5      | 0.72924      | 7.36           | 12.0        | 8009   |
|             | 198       | 415.8      | 0.85078      | 7.53           | 14.0        | 7947   |
|             | 198       | 415.8      | 0.97232      | 7.71           | 16.0        | 7762   |
|             | 198       | 415.8      | 1.09386      | 7.90           | 18.0        | 7577   |





| Project No.  | 990-62-01                  | Boring No.                      | G-8-98    |
|--------------|----------------------------|---------------------------------|-----------|
| Project Name | Envirochem                 | Sample No.                      | 210       |
| Client       | Versar, Inc.               | Depth                           | 8-10 Feet |
|              |                            |                                 |           |
| Diameter     | 2.86 in                    | Proving Ring                    | 21579     |
| Height       | 5.836 in                   | Proving Ring Calibration Factor | 2.1       |
| Area         | 6.420986 in <sup>2</sup>   | Moisture Content                | 13.4 %    |
| Volume       | 0.02168569 ft <sup>3</sup> | Unit Weight                     | 144.3 pcf |

Specific Gravity 2.764 Void Ratio 0.36

127.3 pcf

Dry Unit Weight

Degree of Saturation 100 %

| Elapse Time | Load Dial | Axial Load | Total Strain | Corrected Area | Unit Strain | Stress |
|-------------|-----------|------------|--------------|----------------|-------------|--------|
|             | in 10E-04 | PSF        |              | in²            | (%)         | psf    |
|             | 0         | 0          | 0            | 0              | 0           | 0      |
|             | 18        | 37.8       | 0.05836      | 6.49           | 1.0         | 839    |
|             | 47        | 98.7       | 0.11672      | 6.55           | 2.0         | 2169   |
|             | 78        | 163.8      | 0.17508      | 6.62           | 3.0         | 3563   |
|             | 100       | 210        | 0.23344      | 6.69           | 4.0         | 4521   |
|             | 117       | 245.7      | 0.2918       | 6.76           | 5.0         | 5235   |
|             | 131       | 275.1      | 0.35016      | 6.83           | 6.0         | 5799   |
|             | 142       | 298.2      | 0.40852      | 6.90           | 7.0         | 6219   |
|             | 149       | 312.9      | 0.46688      | 6.98           | 8.0         | 6456   |
|             | 152       | 319.2      | 0.52524      | 7.06           | 9.0         | 6514   |
|             | 148       | 310.8      | 0.5836       | 7.13           | 10.0        | 6273   |
|             | 147       | 308.7      | 0.70032      | 7.30           | 12.0        | 6092   |

Weight

3.13 lbs

STRESS - STRAIN CURVE Envirochem Site Boring G-8-98



| Project No. | 990-62-01                  | Boring No.                      | G-10-98   |
|-------------|----------------------------|---------------------------------|-----------|
| Project Nam | e Envirochem               | Sample No.                      | 126       |
| Client      | Versar, Inc.               | Depth                           | 8-10 Feet |
| Diameter    | 2.461 in                   | Proving Ring                    | 21579     |
| Height      | 4.031 in                   | Proving Ring Calibration Factor | 2.1       |
| Area        | 4.75436899 in <sup>2</sup> | Moisture Content                | 10.3 %    |
| Volume      | 0.01109078 ft <sup>3</sup> | Unit Weight                     | 133.1 pcf |
| Weight      | 1.4764 lbs                 | Dry Unit Weight                 | 120.7 pcf |
|             | •                          | Specific Gravity                | 2.752     |
|             |                            | Void Ratio                      | 0.42      |
|             |                            | Degree of Saturation            | 67 %      |
|             |                            |                                 |           |

| Elapse Time | Load Dial | Axial Load | Total Strain | Corrected Area | Unit Strain | Stress |
|-------------|-----------|------------|--------------|----------------|-------------|--------|
|             | in 10E-04 | PSF        |              | in²            | (%)         | psf    |
|             | 0         | 0          | 0            | 0              | 0           | 0      |
|             | 5         | 10.5       | 0.04031      | 4.80           | 1.0         | 315    |
|             | 6         | 12.6       | 0.08062      | 4.85           | 2.0         | 374    |
|             | 8         | 16.8       | 0.12093      | 4.90           | 3.0         | 494    |
|             | 10        | 21         | 0.16124      | 4.95           | 4.0         | 611    |
|             | 12        | 25.2       | 0.20155      | 5.00           | 5.0         | 725    |
|             | 15        | 31.5       | 0.24186      | 5.06           | 6.0         | 897    |
|             | 17        | 35.7       | 0.28217      | 5.11           | 7.0         | 1006   |
|             | 19        | 39.9       | 0.32248      | 5.17           | 8.0         | 1112   |
|             | 22        | 46.2       | 0.36279      | 5.22           | 9.0         | 1273   |
|             | 24        | 50.4       | 0.4031       | 5.28           | 10.0        | 1374   |
|             | 27        | 56.7       | 0.48372      | 5.40           | 12.0        | 1511   |
|             | 31        | 65.1       | 0.56434      | 5.53           | 14.0        | 1696   |
|             | 34        | 71.4       | 0.64496      | 5.66           | 16.0        | 1817   |
|             | 37        | 77.7       | 0.72558      | 5.80           | 18.0        | 1930   |
|             | 38        | 79.8       | 0.8062       | 5.94           | 20.0        | 1934   |





| Project No.<br>Project Name | 990-62-01<br>Envirochem |                |              |                  | Boring No.<br>Sample No. | G-11-98<br>44 |
|-----------------------------|-------------------------|----------------|--------------|------------------|--------------------------|---------------|
| Client                      | Versar, Inc.            |                |              |                  | Depth                    | 10'-12'       |
| Diameter                    | 2.868 i                 | n              |              |                  | Proving Ring             | 8215          |
| Height                      | 5.791 in                |                | Pr           | oving Ring Calil | bration Factor           | 7.5           |
| Area                        | 6.45695784 i            | n <sup>2</sup> |              | -                | sture Content            | 12 %          |
| Volume                      | 0.02163903 f            | ₹ <sup>3</sup> |              |                  | Unit Weight              | 145.1 pc      |
| Weight                      | 3.14                    | bs             |              | Dr               | y Unit Weight            | 129.6 pc      |
| -                           | •                       |                |              | Sp               | pecific Gravity          | 2.699         |
|                             |                         |                |              |                  | Void Ratio               | 0.30          |
|                             |                         |                |              | Degree           | of Saturation            | 100 %         |
| Elapse Time                 | Load Dial               | Axial Load     | Total Strain | Corrected Area   | Unit Strain              | Stress        |
|                             | in 10E-04               | PSF            |              | in²              | (%)                      | psf           |
|                             | 0                       | 0              | 0            | 0                | 0                        | 0             |
|                             | 14                      | 105            | 0.05791      | 6.52             | 1.0                      | 2318          |
|                             | 18                      | 135            | 0.11582      | 6.59             | 2.0                      | 2950          |
|                             | 20                      | 150            | 0.17373      | 6.66             | 3.0                      | 3245          |
|                             | 24                      | 180            | 0.23164      | 6.73             | 4.0                      | 3854          |
|                             | 26                      | 195            | 0.28955      | 6.80             | 5.0                      | 4131          |
|                             | 29                      | 217.5          | 0.34746      | 6.87             | 6.0                      | 4560          |
|                             | 31                      | 232.5          | 0.40537      | 6.94             | 7.0                      | 4822          |
|                             | 32                      | 240            | 0.46328      | 7.02             | 8.0                      | 4924          |
|                             | 33                      | 247.5          | 0.52119      | 7.10             | 9.0                      | 5023          |
|                             | 34                      | 255            | 0.5791       | 7.17             | 10.0                     | 5118          |
|                             | 37                      | 277.5          | 0.69492      | 7.34             | 12.0                     | 5446          |
|                             | 39                      | 292.5          | 0.81074      | 7.51             | 14.0                     | 5610          |
|                             | 38                      | 285            | 0.92656      | 7.69             | 16.0                     | 5339          |

1.04238

7.87

18.0

4938

36

270

### Unconfined Compressive Strength ASTM D 2199-91

STRESS - STRAIN CURVE Envirochem Site Boring G-11-98 S-44 (10'-12')



Project No. 990-62-01
Project Name Envirochem
Client Versar, Inc.

Boring No. G-14-98
Sample No. 241
Depth 12-14 Feet

Diameter 2.857 in Proving Ring 21579 Height 6.018 in **Proving Ring Calibration Factor** 2.1 Area 6.40752247 in<sup>2</sup> **Moisture Content** 8.4 % Volume 0.02231509 ft<sup>3</sup> Unit Weight 140.3 psf Weight 3.13 lbs Dry Unit Weight 129.4 psf Specific Gravity 2.709 Void Ratio 0.31 74 % Degree of Saturation

Total Strain Corrected Area Unit Strain Stress Elapse Time Load Dial Axial Load in<sup>2</sup> in 10E-04 **PSF** (%) psf 0 0 0 0 0 0 22 46.2 0.06018 6.47 1.0 1028 58 121.8 0.12036 6.54 2.0 2683 90 189 0.18054 6.61 3.0 4120 115 241.5 0.24072 6.67 4.0 5210 0.3009 6.74 5.0 6142 137 287.7 325.5 0.36108 6.82 6.0 6876 155 7.0 172 361.2 0.42126 6.89 7549 399 6.96 8.0 8250 190 0.48144 205 430.5 0.54162 7.04 9.0 8804 7.12 10.0 9302 219 459.9 0.6018 7.28 12.0 9926 239 501.9 0.72216 249 522.9 0.84252 7.45 14.0 10106 248 520.8 0.96288 7.63 16.0 9832

STRESS - STRAIN CURVE Envirochem Site Boring G-14-98 12' - 14'



| Project No.  | 990-62-01                  | Boring No.                      | G-15-98    |
|--------------|----------------------------|---------------------------------|------------|
| Project Name | Envirochem                 | Sample No.                      | 248        |
| Client       | Versar, Inc.               | Depth                           | 10-12 Feet |
|              |                            |                                 |            |
| Diameter     | 2.865 in                   | Proving Ring                    | 21579      |
| Height       | 5.983 in                   | Proving Ring Calibration Factor | 2.1        |
| Area         | 6.44345663 in <sup>2</sup> | Moisture Content                | 11.8 %     |
| Volume       | 0.02230972 ft <sup>3</sup> | Unit Weight                     | 144.8 psf  |
| Weight       | 3.23 lbs                   | Dry Unit Weight                 | 129.5 psf  |
|              |                            | Specific Gravity                | 2.727      |
|              |                            | Void Ratio                      | 0.31       |
|              |                            | Degree of Saturation            | 100 %      |

| Elapse Time | Load Dial | Axial Load | Total Strain | Corrected Area  | Unit Strain | Stress |
|-------------|-----------|------------|--------------|-----------------|-------------|--------|
|             | in 10E-04 | PSF        |              | in <sup>2</sup> | (%)         | psf    |
|             | 0         | 0          | 0            | 0               | 0           | 0      |
|             | 5         | 10.5       | 0.05983      | 6.51            | 1.0         | 232    |
|             | 10        | 21         | 0.11966      | 6.57            | 2.0         | 460    |
|             | 17        | 35.7       | 0.17949      | 6.64            | 3.0         | 774    |
|             | 24        | 50.4       | 0.23932      | 6.71            | 4.0         | 1081   |
|             | 31        | 65.1       | 0.29915      | 6.78            | 5.0         | 1382   |
|             | 37        | 77.7       | 0.35898      | 6.85            | 6.0         | 1632   |
|             | 41        | 86.1       | 0.41881      | 6.93            | 7.0         | 1789   |
|             | 45        | 94.5       | 0.47864      | 7.00            | 8.0         | 1943   |
|             | 52        | 109.2      | 0.5983       | 7.16            | 10.0        | 2196   |
|             | 58        | 121.8      | 0.71796      | 7.32            | 12.0        | 2395   |
|             | 61        | 128.1      | 0.83762      | 7.49            | 14.0        | 2462   |
|             | 64        | 134.4      | 0.95728      | 7.67            | 16.0        | 2523   |
|             | 65        | 136.5      | 1.07694      | 7.86            | 18.0        | 2501   |
|             | 65        | 136.5      | 1.1966       | 8.05            | 20.0        | 2440   |

STRESS - STRAIN CURVE Envirochem Site Boring G-15-98 10' - 12'



Project No. 990-62-01
Project Name Envirochem
Client Versar, Inc.

Boring No. G-16-98 Sample No. 256

Depth

8-10 Feet

| Diameter | 2.869 in                   | Proving Ring                    | 21579     |
|----------|----------------------------|---------------------------------|-----------|
| Height   | 5.519 in                   | Proving Ring Calibration Factor | 2.1       |
| Area     | 6.46146139 in <sup>2</sup> | Moisture Content                | 12.3 %    |
| Volume   | 0.02063704 ft <sup>3</sup> | Unit Weight                     | 139.9 pcf |
| Weight   | 2.888 lbs                  | Dry Unit Weight                 | 124.6 pcf |
| •        |                            | Specific Gravity                | 2.632     |
|          |                            | Void Ratio                      | 0.32      |
|          |                            | Degree of Saturation            | 100 %     |

| Elapse Time | Load Dial | Axial Load | Total Strain | Corrected Area | Unit Strain | Stress |
|-------------|-----------|------------|--------------|----------------|-------------|--------|
|             | in 10E-04 | PSF        |              | in²            | (%)         | psf    |
|             | 0         | 0          | 0            | 0              | 0           | 0      |
|             | 8         | 16.8       | 0.05519      | 6.53           | 1.0         | 371    |
|             | 26        | 54.6       | 0.11038      | 6.59           | 2.0         | 1192   |
|             | 38        | 79.8       | 0.16557      | 6.66           | 3.0         | 1725   |
|             | 42        | 88.2       | 0.22076      | 6.73           | 4.0         | 1887   |
|             | 41        | 86.1       | 0.27595      | 6.80           | 5.0         | 1823   |
|             | 40        | 84         | 0.33114      | 6.87           | 6.0         | 1760   |

STRESS - STRAIN CURVE Envirochem Site Boring G-16-98 8' - 10'



# APPENDIX D DEWATERING PUMP RATE ESTIMATES BY RADIAN

412 788 1316 P.02/12 RADIAN

|    | CLIE     | NT:      | =c       | <u>C</u> |          |                                                  |              |              | 0        | NO.:         | 14       |              |             |              |           |                      | Y: 1           | N         | . [          | 20         | w            | 4                 | Ł        | P/                                               | PAGE / OF    |            |          |               |  |  |
|----|----------|----------|----------|----------|----------|--------------------------------------------------|--------------|--------------|----------|--------------|----------|--------------|-------------|--------------|-----------|----------------------|----------------|-----------|--------------|------------|--------------|-------------------|----------|--------------------------------------------------|--------------|------------|----------|---------------|--|--|
|    | SUB      | JEC      | T        | e        | NA       | 1                                                | er           | in           | 9        | F            | 24       | 10           | <u>.</u> ,7 | •            |           | C                    | HECI           | KED       | BY:          |            |              |                   |          | 01                                               | ITE:         | <b>5</b> / | 97       |               |  |  |
| [  |          |          |          |          |          |                                                  |              |              |          |              |          |              |             |              |           |                      |                |           |              |            |              |                   |          |                                                  |              |            |          |               |  |  |
| ļ  | _        | _{       | ro       | 6        | eu       | 1                                                |              |              | e        | ter          | M        | IN           | 2           | Ne           | (         | de                   | w              | 4         | te,          | 111        | 9            |                   | 4        | 40                                               |              |            |          |               |  |  |
| ļ  |          |          |          |          |          |                                                  |              | _1           | ec       | ęs           | SA       | rg           |             | to           | )         | M                    | 4              | N         | TA           | 11         | <u>'</u>     |                   |          |                                                  |              | d          | <u> </u> |               |  |  |
|    |          |          |          |          |          |                                                  |              | 11           | A        | te           | r        | 6            | e A         | rin          | 9         | 3                    | 20             | ne        | •            | p          | 01           | en                | #        | 21                                               | 4            | Tri        | ے        |               |  |  |
|    |          |          |          |          |          |                                                  |              | S            | JE       | F            | tc.      | 2            | E           | 10           | v.        | 7                    |                |           |              |            |              |                   |          |                                                  |              |            |          |               |  |  |
|    |          |          |          |          |          |                                                  |              |              |          |              |          |              |             |              |           |                      |                |           | CA           | 10         | 1            | 110               | n        | 4                                                | n            | t          | ne       |               |  |  |
|    | _        |          |          |          |          |                                                  |              | (            | 0        | Ut           | he       | 11           | _           | C            | N         | Cre                  | 2 11           | •         | PA           | 0          |              | AY                | e p      | <u>-</u>                                         |              |            | ļ        |               |  |  |
|    |          |          |          |          |          |                                                  |              |              |          |              |          |              |             |              |           |                      |                |           |              |            |              |                   |          |                                                  |              |            |          |               |  |  |
|    |          | ov       | 1-       | 3        |          |                                                  |              |              |          |              |          |              |             |              |           |                      |                |           |              |            |              |                   |          | ov                                               | 1            | -          | ļ        |               |  |  |
| W  |          |          |          |          |          |                                                  |              |              | _        |              |          |              | L           |              |           |                      |                |           |              |            | <b>!</b>     |                   |          |                                                  | _            |            | ↓_       | $\varepsilon$ |  |  |
| Ì  |          |          |          |          |          |                                                  |              |              |          |              |          | _            | _           | ļ            |           |                      |                |           |              |            |              |                   |          |                                                  | _            |            | -        |               |  |  |
|    |          |          | <u> </u> | 1        |          | <u>5.</u>                                        | 0            | 10           | 28       | TE           | P        | 10           |             | 1            | 2         | 2                    | E              | <u>L_</u> |              |            |              |                   |          |                                                  | _            |            | _        |               |  |  |
| 98 | 2        |          | 7        | -[       |          |                                                  |              |              |          |              |          |              |             |              |           |                      |                |           |              |            |              |                   |          | 1_                                               | Ļ            | V_         | 88       |               |  |  |
|    | İ        |          |          |          | <u> </u> | -                                                |              | _            | -        | ļ            | ļ        |              | <b> </b>    | -4           | -X        | C                    | W              | 77        | OI           | <i>)</i> _ | E            | 57                | )        | _                                                |              |            |          |               |  |  |
|    | -        |          |          |          |          | ļ                                                | ļ            |              |          | <u> </u>     | ļ        |              |             | 1            | ļ         |                      | L              |           |              | 1          | <u> </u>     |                   | <u> </u> | _                                                | 1            | bī.        | X<br>EM/ |               |  |  |
|    |          |          |          |          |          | <del>                                     </del> | <u> </u>     |              | <u> </u> | ļ            | 10       | 4            | 12          | 12           | 0         | -                    | ×              | 80        | -            | WI         | E            | -                 |          | <del> </del>                                     | Ľ            | 74         | SV.      | 1-1           |  |  |
|    | ļ        |          |          | <b>_</b> | ļ,_      | -                                                | <u> </u>     |              | _        | <u> </u>     |          | <u> </u>     | _           |              |           | ļ                    | <b> </b>       |           |              | <u> </u>   |              | ;<br><del> </del> |          |                                                  | L            | ļ.,        | -        | 141           |  |  |
|    |          | -        | <b> </b> | 111      | L        | 上                                                | <u> </u>     |              |          | <u> </u>     |          |              |             | 12           |           | -                    | -              |           | 00           | 0          | 1            |                   |          |                                                  |              | 1          |          | 8             |  |  |
|    |          |          |          | <u> </u> | ļ        | -                                                | <u> </u>     |              | _        | <u> </u>     | <u> </u> | -            |             | ]-           | ļ         | <u> </u>             | -              |           | -            | -          | ↓            |                   | ļ        | -                                                | _            | -          |          | PURE          |  |  |
|    | ļ        | -        | -        |          | _        | -                                                |              | -            | -        | ***          | 10       | ├-           | 14          | N E          | 17        |                      | <u> </u>       | -         | <del> </del> |            | ↓_           | -                 | Q        |                                                  | L            | +          | -        |               |  |  |
|    |          | _        | Γ.       |          | ļ        | Ð,                                               | 1            |              | -        | 711          |          | <del> </del> | ļ- <u>`</u> |              |           |                      | <del> </del>   |           | ļ            |            | .            |                   | 38       |                                                  |              |            |          |               |  |  |
|    |          | -        | -        | -        | -        |                                                  | <u> </u>     | -            | -        | -            | -        | }-           | ╀           | <del>}</del> | <b>}-</b> | -                    | <del> </del> - |           |              | -          |              | <u> </u>          |          |                                                  | _            | -          |          |               |  |  |
|    |          | -        | -        | -        | -        | ┼                                                | ┼            | -            | ╁        | <del> </del> | -        | -            | -           | +-           | -         | -                    | -              | <u> </u>  | -            |            | }            |                   | -        | <del>                                     </del> | $\vdash$     | -          | +-       | -             |  |  |
|    | -        | <u>!</u> | ╁        | +        | -        | ╂                                                | ┼            | -            | ┼-       | 1            | ╂—       | <del> </del> | ┼-          | -            | 1         |                      | <del> </del>   |           | -            | ┼          | ╁            | $\vdash$          | -        | +-                                               | ╀            | -          | -        |               |  |  |
|    | -        | $\vdash$ | #        | +        | +-       | +                                                | -            | +            | +        | +-           | +        | +-           | +           |              | -         | +-                   | -              | ╁         | -            | +-         | <del> </del> | -                 | +        | +-                                               | -            | +-         | +        | +-            |  |  |
|    | -        | -        | -        | +        | -        | +                                                | _            | 1            | <b>b</b> | +-           |          | -            | -           | -            | -         | -                    | +              | -         | -            | +-         | +-           | -                 | -        | +                                                | <del> </del> | +          | +        | +             |  |  |
|    | -        | -        | +-       | +        | -        | +-3                                              | 3            | 0            | 1        |              | +-       | +-           | +-          | 1            | -         | -                    | +-             | -         | -            | +          | +            |                   | -        | +                                                | +            | +-         | +        | +-            |  |  |
|    | -        | -        | +        |          | +        | 1                                                | 1            | +            | +        | -            | +-       | +            | +           | +            | +         | +-                   | +              | +         | +-           | +-         | +-           | +-                | +-       | +-                                               | -            | +-         | +        | +             |  |  |
|    | $\vdash$ | +-       | 十        |          | -        | +                                                | -            | <del> </del> | +        | +-           | +-       | +            | +-          | +            | +-        | -                    | +              | -         | +            | +-         | -            | +-                | -        | -                                                | t            | +          |          |               |  |  |
|    | -        | ╁-       | +        |          | 7        | H                                                | <del> </del> | +-           | +-       | 1            | +-       | +            | +           | +-           | +         | +                    | +              | <u> </u>  | +-           | +-         | +            | <del> </del>      | +-       | +                                                | +            | +          | +        |               |  |  |
|    | -        | +        | +-       | +-       | +-       | +-                                               | +            | +-           | +-       | Ť            | +-       | +            | +           | +-           | +         | +-                   | +-             | +         | +            | +-         | +            | -                 | +        | +-                                               | +            | +          |          | +-            |  |  |
|    | -        | +        | +-       | -        | +        | +-                                               | -            | +-           | +-       | h            | 01       | 70           | 4           | +            | <b>₹</b>  | 1                    | 11             |           | 77           | +-         | +            | +                 | +-       | +-                                               | +            | +          | +        | +             |  |  |
|    |          | 1        |          |          | 1        |                                                  |              |              | +-       | +            | 1        | 12           | *           | +-           | 4         | $\rightleftharpoons$ | H.C            | +         | ۲            | +          | +            |                   |          | 1                                                | -            |            |          |               |  |  |
|    |          |          |          | _ !      |          |                                                  |              | .1           | _1       |              |          | 11:          |             |              | 1         |                      | 30             | 1         |              |            | . 1          |                   |          |                                                  |              | 4          |          |               |  |  |

#### RADIAN

#### **CALCULATION SHEET**

| JECT      | <del>-</del> |          | <u>_</u> | - 47                                   | 2d          | U                | en       | 2/9                                          | in       | کئ       | M         | No           | 10         | <u>n</u>     |            |         | JO       | B NC | ). <u> </u> | <u> </u>     | 72         | 45         | <u>S. (</u>      | 28  |       |                                          |                                       | _           |
|-----------|--------------|----------|----------|----------------------------------------|-------------|------------------|----------|----------------------------------------------|----------|----------|-----------|--------------|------------|--------------|------------|---------|----------|------|-------------|--------------|------------|------------|------------------|-----|-------|------------------------------------------|---------------------------------------|-------------|
| JECT      |              |          |          |                                        |             |                  |          | _                                            |          |          | _         |              |            | _            |            |         | SH       | EET  |             |              | <u> </u>   | °          | OF_              |     | 3     |                                          | SHE                                   | Ε           |
| Ž,        | n            | 3        | ٨        | ζ                                      | in          | w                | at       | 100                                          | ٧٦.      |          | (         | 74           | VO         | D            | A          | V       |          | N    | 10          | 08           | - 4        | )          |                  |     |       |                                          |                                       |             |
| Mo        |              | 0        | <u> </u> | ر ــــــــــــــــــــــــــــــــــــ | <b></b>     |                  |          |                                              |          |          | -         |              |            |              |            |         |          |      |             |              |            |            |                  |     |       | -+                                       | }                                     |             |
| 10        | 24           | <u>د</u> | 9        | 10                                     | _           |                  |          |                                              |          |          |           |              |            |              |            |         |          |      |             |              |            |            |                  |     |       |                                          |                                       |             |
| 2         | 20           | 0        | a        | <b>)</b>                               | ς 4         | 20               | $\alpha$ | 6                                            | P,       |          |           |              |            |              |            |         |          |      |             |              |            |            |                  |     |       |                                          |                                       | _           |
|           | 7            |          |          | (                                      | 5 2         |                  | 1        |                                              |          | <u> </u> |           | <del> </del> |            |              | ļ          |         |          |      |             |              |            |            |                  |     |       |                                          |                                       |             |
| ry        | <u> </u>     | w        | UC.      | -7.                                    | 21          | an               | 2        | ~                                            | <b>S</b> |          |           |              |            |              | ļ <b>-</b> |         |          | ×    | <u> </u>    | cm           | 'e         | =          | 2                | 83  | 84    | da                                       |                                       |             |
| ۲         | _            |          | ×ι       | o                                      | cn          | (5               | :        |                                              | 29       | 3.       | 3         | 7            |            | 25           | R          | MG      | E        |      |             | cm           |            |            | 9                | 8 8 |       | dal                                      | <br>                                  |             |
|           |              |          |          |                                        | -           |                  |          | ļ                                            |          |          | _         |              |            | 1            | -          |         |          |      |             |              | <u>ت</u>   |            |                  | _   |       |                                          |                                       | ļ. <b>.</b> |
|           |              |          | 0        |                                        |             | -                | ~        |                                              |          | - 0      | Ĝ         | 10           |            | W-           | 1          |         |          |      |             |              |            | 71         | \<br>\<br>\<br>\ |     |       |                                          | <br>}                                 |             |
| Ag        | a            | MC       |          |                                        |             |                  | , , ,    | 710                                          |          | 2        | Ç         | 6            | $\epsilon$ | W.           | 3          |         | , AN     | G 3  |             | کمر          | 5          | 4          |                  |     |       |                                          |                                       | L           |
|           |              |          |          |                                        |             | -                | -e       | WJ 2                                         | 8        |          |           | OW           | 5          |              |            |         |          |      |             |              |            | :<br>      | ļ                | ļ   |       | _                                        |                                       | !           |
| \         | =            | 4        | 1        | 10                                     | -           |                  | 8        | 79                                           | 66       | _        | 8         | 0W<br>78     | 5          | <u> </u>     | <br>       | 0       | O        | D    | ما          |              | <u> </u>   | <u> </u>   | !                | }   |       |                                          |                                       |             |
|           | ,            |          | !        |                                        |             | <u> </u>         |          |                                              | 64       | 0        | -         | <u> </u>     | -          |              |            |         |          |      | _           | 1            |            |            |                  |     |       | <u> </u>                                 |                                       | 1           |
| (         | 10           | M        | 1        | V                                      | 14          |                  |          | 0                                            | ال       |          |           |              |            | <b>,</b>     |            |         |          |      |             | /            | ) /        | YV         | <b>,</b>         | -   | ন (   | <b>O</b> .0                              | ノ                                     | Ĵ           |
| <u> </u>  |              |          |          |                                        |             | <br><del> </del> | -        | 4 /                                          |          | D.       | 4         | 376          | 13         | <u> </u>     | -          | 0       | Q        | 5    | 6           | ]            | ļ          |            | <u>.</u>         |     | ·<br> |                                          | ,                                     |             |
|           |              |          | ļ        |                                        | <u> </u>    |                  | ļ<br>    |                                              |          | T.       | <u>ማ</u>  | _            |            | ļ            | _          |         |          | !    | -           | <del> </del> |            |            | ļ                | ÷   |       |                                          | · · · · · · · · · · · · · · · · · · · | 1           |
|           |              |          | -        | Ì                                      | ]           |                  |          |                                              | Ĭ<br>+   |          |           |              |            |              | -          |         |          |      |             | ;            |            |            | <u>.</u>         |     |       |                                          |                                       |             |
| <u></u> . | N            | ļ        |          | :<br>†                                 | ļ           |                  |          |                                              |          | -        | <u> </u>  | -            | -          | -            | ·<br>      | 1       | <u> </u> |      |             | ļ            | :<br>}     | ેડ         | ij               | Ť   |       |                                          | <b></b>                               |             |
| <u> </u>  | ^            | ec.      |          | :                                      |             | . I<br>1         | <u> </u> | ု<br>ု တ                                     | V20      |          |           |              |            |              | ЬМ         | -<br>\$ | <br>     |      | ļ           |              | γ<br>1     | Vico       |                  | ax  | 0     |                                          | :                                     | ٠.          |
|           |              | 1        |          | )                                      | Ī           |                  |          | 10                                           |          | Tagara   | 6         | 10           |            | -            | 27         |         |          |      | -           |              |            |            |                  | -   |       |                                          |                                       | :           |
|           | 8            |          |          |                                        | .           |                  | <u>.</u> | 5                                            | A.6      | 0        | <u> </u>  | -            |            | <u> </u>     | E) R       | 7       | -        |      |             | ļ            | ; <b>{</b> | 37         | 7.1              | 5   | .     |                                          |                                       |             |
|           | i            |          |          |                                        | <del></del> |                  | - A      | ·                                            | -        |          |           | <u> </u>     |            | <u>.</u><br> |            | i       |          |      |             | ļ            | į<br>I     |            |                  | ÷   |       | ' ·                                      | • •                                   |             |
| 185       | VV           | F        | <br>     |                                        |             |                  |          | 1                                            |          |          | +         |              | 1          | -            |            | 1       |          |      |             |              |            |            |                  | :   |       | ر در در در در در در در در در در در در در | :                                     |             |
|           |              | 1        | 6        | ·<br>-                                 |             |                  |          | <u>.                                    </u> | ·<br>    | ,        |           | ļ<br>        | <u>.</u>   | <u>.</u>     |            |         |          |      |             | 5            | .1         |            |                  | ,   |       |                                          |                                       |             |
| ے م       | Qu.          | n        | e C      | 7                                      | \$0         | 40               | PP       |                                              |          | ho       | <u>in</u> | ØΣ           | 21         | <b>4</b> 0   | بكيد       | )       | -0C.     | 4    | ۲           | 4            | •<br>•     | <i>.</i> ; | - ,              |     |       | i                                        |                                       |             |

#### **CALCULATION SHEET**

|          | _         | (        | 7            | W            | _              |                |          |     |              |                |              | F              |           | W            | 91           | <b>1</b>     |              |                                                  | -                                                |       | C            | ALC.                                   | NO.            |          |           |                                       |            |          |
|----------|-----------|----------|--------------|--------------|----------------|----------------|----------|-----|--------------|----------------|--------------|----------------|-----------|--------------|--------------|--------------|--------------|--------------------------------------------------|--------------------------------------------------|-------|--------------|----------------------------------------|----------------|----------|-----------|---------------------------------------|------------|----------|
| NATURE   | <br>₹     | -ر       | <u>_</u>     | P            | 1              |                | <u> </u> | Je  | <u>~'</u>    |                | <u>.</u>     | DAT            | ₹<br> -   | Zun.         |              | <u>`</u>     | _ CI         | HECK                                             | ŒD_                                              | m     | <u></u>      | ــــــــــــــــــــــــــــــــــــــ | [<br>[         | DATE     | 4         |                                       |            | _        |
| JECT_    |           |          |              |              |                |                |          |     |              | 3              |              |                |           |              |              |              | SI           | HEET                                             | ·                                                | 2     |              | 0                                      | <b>-</b> -     | 3        | <u> </u>  |                                       | SHE        | _<br>E1  |
| يات      | 91        | F        | 10.          | <u>سم</u>    | =>^            | 01             |          | NO  |              |                |              |                |           |              |              |              |              |                                                  |                                                  |       | 1            | 1                                      |                | Т        |           | <del>-</del>                          | <u> </u>   |          |
| A        |           | m        | 0            | a            | 0              | 4              | 24       | J.  | =            | 8              | 81           | Ç              | F         | MS           | ب            |              |              |                                                  |                                                  |       |              |                                        |                |          |           |                                       | }          |          |
| 4        | 244       | 35       | \v           | ۷            | leu            | 1              | Th       | rck | e            |                | 77           | ٠ ه            | <u>L.</u> |              | 37           |              | 37           | 0                                                | 암                                                | ^     | NSL          |                                        |                |          |           |                                       |            |          |
| P        | zy        | e        | 6            | A            | m              | -              | <b>r</b> | =   | <u>g</u> s   | 5.             | 5            | स              | MS        | <u>L</u>     |              |              |              | 0                                                |                                                  |       |              |                                        |                | -        | <u>}</u>  |                                       |            |          |
|          |           |          |              |              |                |                |          |     |              |                |              |                |           | -            |              |              |              |                                                  |                                                  | -     |              |                                        |                |          | -+        |                                       |            |          |
| 144      | Ī         | lo       | . (          | Co           | WI.            | λŢ.            | 00       | Z.  |              |                |              |                |           |              |              |              |              |                                                  |                                                  |       | _            |                                        |                |          |           | _                                     |            | _        |
| 0        |           |          | <b>-</b>     |              | <u></u>        | -              | -        | -   |              | -              |              | <u> </u>       | 0         |              | -            |              | 10           |                                                  |                                                  |       |              |                                        |                |          | {         |                                       |            |          |
| Sv       | NU        | <u>-</u> | 4            | Y            | C              | 1              | 14       | 9   | 1            | 201            | =            | -              | 8         | 13           | 2            | - 1          | ns           | <u> </u>                                         |                                                  |       |              |                                        |                |          |           |                                       |            |          |
| 3        |           | - (      | b. 1         | $\infty$     | 2              | 1              |          |     |              |                | <u> </u>     |                | -         | <del> </del> | -            | -            |              | <del>                                     </del> |                                                  |       |              |                                        |                |          |           |                                       |            | į-       |
|          |           |          | ļ            |              |                |                |          |     | 7            |                |              |                |           |              |              |              |              |                                                  |                                                  |       |              |                                        |                |          |           |                                       |            | L        |
| T        | <u> </u>  | Y        | - (          | <b>p</b>     | =              |                | 28       | į . | l            | ŧ              | 11 -         | 7              | 1         | \$ (         | 作)           |              | <del> </del> | <del> </del>                                     |                                                  |       |              |                                        | <del>,</del>   |          |           |                                       |            |          |
|          |           | -        | -            |              | <del> </del> = | _              | 4        | 10  | ). 2         |                | 1            | 12/            | A_        | -            | -            |              | -            | <del> </del>                                     |                                                  |       |              |                                        |                |          |           |                                       |            |          |
|          |           |          | -            |              | <del> </del>   |                | -        | 1   | -            |                | <del> </del> | <del>  '</del> |           | f            | <del> </del> | -            | -            | -                                                |                                                  |       |              |                                        |                |          |           |                                       |            | -        |
|          |           |          |              |              |                |                |          |     |              |                |              |                |           |              |              |              |              |                                                  |                                                  |       |              |                                        |                |          |           |                                       |            | ;-<br>j_ |
|          |           |          |              |              |                | -              |          |     | ļ            |                |              |                |           |              |              | <u> </u>     |              |                                                  |                                                  |       |              |                                        |                |          |           |                                       |            | -        |
|          |           | ļ        |              | <del> </del> |                | -              |          |     |              | -              | ļ            | -              | -         | -            | -            |              | -            | ╁                                                | -                                                |       |              |                                        |                |          |           |                                       |            |          |
| $\dashv$ | <b></b>   |          | -            | -            | 1              | -              | +-       |     | <del> </del> |                |              | -              | -         | +-           | -            | <del> </del> | }            | -                                                | -                                                |       | -            | l                                      |                |          |           |                                       |            | <u>-</u> |
|          |           |          | -            | 1-           | -              | 1              |          | -   | $\dagger$    | 1              |              |                | †         | †            | -            | 1            |              | <u> </u>                                         |                                                  |       |              |                                        |                |          |           |                                       |            | -        |
|          |           |          |              |              |                |                |          |     |              |                |              |                |           | Ţ            |              |              | -            |                                                  |                                                  |       |              |                                        |                |          |           |                                       |            |          |
|          |           |          | -            |              | -              | - }            | -        | -   | -            | -              | -            | -              | +         |              | +            |              | -            |                                                  |                                                  |       | ļ            | :<br>                                  |                | <u> </u> |           |                                       |            | 1        |
| }        |           | ļ        | -            | <u> </u>     | -              | +-             |          | }   | -            | -              |              | +-             | +         | +-           | +            | <del> </del> | +            | -                                                | -                                                | -     | <u> </u>     |                                        | <u></u>        |          |           |                                       | -          | -        |
| -        |           |          | <del> </del> |              | <del> </del>   | -              | +        | +-  | -            | -              | <del> </del> | -              | +         | +-           | +-           | +            | 1            | +                                                | <del>                                     </del> | -     | <del> </del> |                                        |                |          | <b></b> - | <del> </del>                          | <u>}</u> - | -        |
|          |           | -        | Ţ            | 1            |                |                |          |     |              |                |              |                |           |              |              |              |              |                                                  |                                                  |       |              |                                        |                |          |           |                                       |            | Ť        |
| -        |           | -        |              | -            | .              | -              |          |     |              | -              |              | <del>-</del>   |           |              | -            | -            |              |                                                  | ļ                                                | ļ     | <u> </u>     | }                                      | ·<br>•• ···· · |          | <u> </u>  |                                       | ;<br>;     | 1        |
|          |           | -        | -            |              | +-             |                | <u> </u> | -   |              |                | +            | -              | 1_        | -            | -            | +-           | -            | _ <u> </u>                                       |                                                  |       | -            | !<br>                                  | <del></del> -  | }        |           | · · · · · · · · · · · · · · · · · · · |            |          |
|          | <b></b> - |          |              |              | -              | · <del> </del> |          |     | <u>.</u>     | . <del> </del> | 1            | +-             | -         | -            |              |              | <br> <br>    | -                                                | -                                                | <br>i | <u></u>      | <u></u>                                | <u> </u>       | {<br>[   | <u></u>   |                                       |            |          |
|          |           |          | 1.           |              |                |                |          |     |              | -              | 1            |                |           |              |              | -            |              |                                                  |                                                  |       |              |                                        | {<br>          |          | 1         | ]                                     |            |          |
|          |           | -        |              | _            |                |                | -        | _   |              | -              |              |                |           |              | _            | _            |              | 1                                                |                                                  |       |              |                                        | -              |          |           |                                       |            | 1        |
|          | :         | į        |              | 1            | į              |                | ì        | į   |              | 1              | Ì            | 1              | ì         | ì            | i            | ì            |              | ١                                                | 1                                                | Ì     |              |                                        | 1              | ì        | i         | :                                     | :          |          |

# RADIAN INTERNATIONAL ILE

### **CALCULATION SHEET**

|               | . T                    | 10-                                              |                          |              |                  | Mal      | ۹٦     |             |                 | CA          | ILC. NO | ·         | <del></del>          |
|---------------|------------------------|--------------------------------------------------|--------------------------|--------------|------------------|----------|--------|-------------|-----------------|-------------|---------|-----------|----------------------|
| SIGNATURE     | Err                    | (D) (1                                           | Densate                  |              | DATE .           | Ty       | , (    | CHEC        | KED             | 000         | ~       | DATE      | <del></del>          |
| PROJECT_      | ACC-                   | - racy                                           | Lewby                    | ang !        | SIMM!            | an bu    |        | JOB N       | 10. <u> </u>    | <u>024.</u> | ), CC   | <u>08</u> |                      |
| SUBJECT_      |                        |                                                  |                          |              |                  |          |        | SHEE        | r               | 3           | _OF_    | <u>3</u>  | SHEETS               |
|               |                        |                                                  |                          |              | $\Box$           |          |        | T           |                 | T           |         |           | 1 1                  |
| <del>- </del> |                        | <del></del>                                      | <del>   </del>           |              |                  |          |        |             | 4100            |             |         | 25A.      |                      |
|               |                        | <del></del>                                      |                          | >            |                  | <b></b>  |        | -{-         | VIEL            | <u> </u>    |         | -CIT      |                      |
|               |                        |                                                  |                          |              |                  | -        |        |             |                 | -}}-        |         |           |                      |
| -             |                        |                                                  |                          |              |                  |          |        |             | <del>  </del> - | -}}-        |         |           |                      |
|               | _   _                  |                                                  |                          |              |                  |          |        |             |                 |             |         |           |                      |
|               |                        | <del>                                     </del> |                          |              |                  |          |        |             |                 |             | -       |           |                      |
|               |                        | <u> </u>                                         |                          |              |                  |          |        |             |                 |             | _       |           |                      |
|               | _ _                    |                                                  |                          |              |                  |          |        |             |                 |             |         |           |                      |
|               |                        |                                                  |                          |              |                  |          |        |             |                 |             |         |           |                      |
|               |                        | 1                                                |                          |              |                  |          |        |             |                 |             |         |           |                      |
|               |                        |                                                  |                          | NJI          |                  |          |        |             |                 |             |         |           |                      |
|               |                        |                                                  |                          |              |                  |          |        |             |                 | -           |         |           |                      |
|               | 1                      | 111                                              |                          | 1-1-         |                  | (10)     |        | <b>a</b>    |                 |             |         |           |                      |
|               |                        | <del></del>                                      |                          |              |                  | 1 1      | ) Ver  |             |                 |             |         |           |                      |
|               |                        | +                                                | <del>  -   -   -  </del> | DITCH        | (100,1           |          | (131   | 0,108       | 3)              |             |         |           |                      |
| <b> </b>      |                        |                                                  |                          | -            | - <del>  -</del> | Tim      | £      | <del></del> | _               | . مدره مه   |         |           |                      |
| <u> </u>      | tot-                   |                                                  |                          | CUIB         |                  |          | ONE    |             |                 | A PEN       | Tare    |           |                      |
| <b> </b>      | - Ř                    |                                                  |                          | COM          |                  | THE T    | 1      |             |                 |             |         |           |                      |
| <b> </b>      | 000                    | 4                                                | ECC                      |              | رصودا            | 100)     | (13)   | ه صوارد     | 2               |             |         |           |                      |
|               |                        |                                                  | CCC                      |              |                  | <u> </u> |        |             | J               |             |         |           |                      |
|               |                        |                                                  |                          |              |                  |          |        |             |                 |             |         |           |                      |
|               |                        |                                                  |                          |              |                  |          |        |             |                 |             |         | ,         |                      |
|               |                        |                                                  |                          |              |                  |          | . أ أ. |             |                 | _!_         | _[_     |           | 1                    |
|               |                        |                                                  |                          |              |                  |          |        | į           | 7               |             | ł       | ;         |                      |
|               |                        |                                                  |                          |              |                  |          | ! !    | 1           |                 |             |         | 1         |                      |
|               |                        |                                                  |                          |              |                  |          | 1      | <u> </u>    | 1               |             | · -   · |           |                      |
|               |                        | 7                                                |                          |              |                  |          | 1-1    |             | -               |             |         |           | ary as result asset. |
|               |                        | -                                                |                          |              |                  |          | ++     | _           | ++              | +           | -       | ; <u></u> |                      |
|               |                        |                                                  |                          | 7            | 2000             | Ft.      | 1      |             |                 |             |         | ; - ı     | 1 1                  |
|               |                        | +                                                |                          |              |                  | +        |        |             |                 |             |         |           | • • • • •            |
|               |                        | <u> </u>                                         |                          |              |                  |          |        |             | <u>.</u>        |             |         |           |                      |
|               | i<br>Seriesperas a cas |                                                  |                          |              |                  |          | i      |             | - }             |             |         |           |                      |
| 1             |                        |                                                  | ļ                        | ·            |                  |          | 7<br>2 |             |                 |             |         |           |                      |
|               | en grandet             | 1.:                                              |                          |              |                  | ļ        |        | - :         | .,              |             | · ·     |           |                      |
|               | . السنيات              | - <del> </del>                                   |                          | وأرار المناب |                  | <u> </u> | 1 1    |             |                 | . :         |         |           |                      |
|               |                        | j                                                |                          |              |                  |          |        |             |                 |             |         | ;         |                      |
|               |                        |                                                  |                          |              |                  |          | : '    |             | 1               |             |         |           | • • •                |
|               |                        |                                                  |                          |              |                  |          |        |             |                 |             |         |           |                      |

#### RADIAN CORP.-PITTSBURGH

Enviro\_d.tdo

TWODAN version 5.0. Thursday, November 20, 1997 6:44:22 AM

Aquifer input data:

Base elevation: 855.500

Hydraulic conductivity of lower layer : 28.3000

Thickness of lower layer: 14.5000

Hydraulic conductivity of upper layer : .283000E-01

Thickness of upper layer: .000000

Minimum sat. thick. for solve calculations.: .706714E-01

Reference head input data:

Specified head: 881.000

x coordinate of reference point: .000000 Y coordinate of reference point: 1000.00

Uniform crossflow data:

Uniform aquifer discharge rate: .861700

Angle of uniform flow direction from x axis: .000000

Well input data (steady-state wells): Total number of steady wells: 10

Head-specified wells:

Column 1: well number

Column 2: x coordinate of well

Column 3: y coordinate of well

Column 4: radius of well

Column 5: discharge of well

Column 6: x coordinate of well reference point

Column 7: y coordinate of well reference point Column 8: head specified at well reference point 1100.00 1100.00 1000.00 .166700 1125.78 1 1000.00 868.000 1205.00 1000.00 .166700 701,811 1205.00 1000.00 868.000 1310.00 1000.00 .166700 998.123 1310.00 1000.00 868.000 1100.00 1080.00 .166700 1100.00 1125.78 1080.00 868.000 1080.00 1205.00 .166700 701.811 1205.00 1080.00 868.000 1310.00 1080.00 .166700 998.123 1310.00 1080.00 868.000 1150.00 1080.00 .166700 798.063 1150.00 1080.00 868.000 1150.00 1000.00 798.063 1150.00 .166700 1000.00 868.000 9 1260.00 1080.00 .166700 746.033 1260.00 1080.00 868.000 1260.00 10 1260.00 1000.00 .166700 746.033 1000.00 868.000

The following sections check if the solution met specified boundary conditions at time = .000000

#### Enviro\_d.tdo

Reference point boundary condition:

Specified head at reference point: 881.000

Model-calculated head at reference point: 881.000

#### Head-specified well boundary conditions:

Column 1: well number

Column 2: head specified at well reference point

Column 3: model-calculated head at well reference point

| 1  | 868.000 | 868.000 |
|----|---------|---------|
| 2  | 868.000 | 868.000 |
| 3  | 868.000 | 868.000 |
| 4  | 868.000 | 868.000 |
| 5  | 868.000 | 868.000 |
| 6  | 868.000 | 868.000 |
| 7  | 868.000 | 868.000 |
| 8  | 868.000 | 868.000 |
| 9  | 868.000 | 868.000 |
| 10 | 868.000 | 868.000 |

#### Enviro\_d2.tdo

TWODAN version 5.0. Thursday, November 20, 1997 8:08:10 AM

Aquifer input data:

Base elevation: 855.500

Hydraulic conductivity of lower layer :

Thickness of lower layer: 14.5000

Hydraulic conductivity of upper layer : .283000E-01

Thickness of upper layer: .000000

Minimum sat. thick. for solve calculations.: .706714E-01

Reference head input data:

Specified head: 881.000

x coordinate of reference point: .000000 Y coordinate of reference point: 1000.00

Uniform crossflow data:

Uniform aquifer discharge rate: .861700

Angle of uniform flow direction from x axis: .000000

Well input data (steady-state wells): Total number of steady wells: 10

Head-specified wells:

Column 1: well number

Column 2: x coordinate of well

Column 3: y coordinate of well

Column 4: radius of well

Column 5: discharge of well

Column 6: x coordinate of well reference point Column 7: y coordinate of well reference point

| Column  |                    | ified at well |           |         |         |
|---------|--------------------|---------------|-----------|---------|---------|
| 1       |                    | 1000.00       | .166700   | 879.899 | 1100.00 |
|         | 868.000            |               |           |         |         |
|         | 1205.00            | 1000.00       | .166700   | 529.615 | 1205.00 |
| _       | 868.000            |               | 4.5.60.00 | 500 050 | 1210 00 |
| -       | 1310.00            | 1000.00       | .166700   | 733.053 | 1310.00 |
|         | 868.000            | 4.004 0.0     | 4.66550   | B45 030 | 4400 00 |
| -       | 1100.00            | 1080.00       | .166700   | 717.932 | 1100.00 |
|         | 868.000            | 1000 00       | 166700    | 354.439 | 1205.00 |
| _       | 1205.00<br>868.000 | 1080.00       | .166700   | 334.439 | 1205.00 |
|         | 1310.00            | 1080.00       | .166700   | 552.636 | 1310.00 |
| _       | 868.000            | 1000.00       | .100700   | 352.030 | 1310.00 |
|         | 1150.00            | 1080.00       | .166700   | 448.082 | 1150.00 |
|         | 868.000            | 2000.00       | .100/00   | 2401002 | 1130.00 |
|         | 1150.00            | 1000.00       | .166700   | 614.024 | 1150.00 |
|         | 868.000            | 2000.00       | . 200, 00 | 0211021 |         |
|         | 1260.00            | 1080.00       | .166700   | 378.726 | 1260.00 |
| 1080.00 | 868,000            |               |           |         |         |
|         | 1260.00            | 1000.00       | .166700   | 554.068 | 1260.00 |
| 1000.00 | 868.000            |               |           |         |         |
|         |                    |               |           |         |         |

Data for impermeable/resistant boundary number 1

Type of boundary: resistant Shape of boundary: open

#### Enviro\_d2.tdo

```
Number of corners on boundary:
  Thickness/Conductivity (not used for imperm.):
                                                        714.000
  Boundary data:
    Column 1: corner number
    Column 2: x coordinate of corner point
    Column 3: y coordinate of corner point
    Column 4: Head on + side of boundary (ave. of 2 control points)
Column 5: Head on - side of boundary (ave. of 2 control points)
                                         907.500
             109.181
                           1200.00
                                                        903.500
       1
       2
             605.459
                           1205.00
                                          881.116
                                                        876.156
       3
             1210.92
                           1205.00
                                          880.274
                                                        870.466
       4
             1940.45
                           1210.00
                                          907.500
                                                        903.500
The following sections check if the solution met
specified boundary conditions at time = .000000
Reference point boundary condition:
  Specified head at reference point:
                                           881.000
  Model-calculated head at reference point:
                                                   B81.000
Head-specified well boundary conditions:
  Column 1: well number
  Column 2: head specified at well reference point
  Column 3: model-calculated head at well reference point
       1
            868.000
                          868.000
       2
            868.000
                          868.000
            868.000
                          868,000
       3
       4
            868.000
                          868.000
                          868.000
       5
            868.000
       6
            868.000
                          868.000
       7
            868.000
                          868.000
                           868.000
       Я
            868.000
       9
            868.000
                           868,000
```

Boundary conditions, imperm./resist. boundary number 1
Type of boundary: Resistant

868.000

Column 1: Corner number

868.000

10

Column 2: Model-calculated discharge Qn across boundary (average of Qn at two control points associated with this corner)

Column 3: Qn\* across boundary calculated from head drop and the resistance (resistant boundary only) (average of Qn\* at two control points associated with this corner)

Column 4: Ratio of columns 3/2 (resistant boundary only)

2 .100671 .100733 1.00061 3 .199021 .199169 1.00074

(see attached output for data used in model) Pumping with no slurry wall Total Q=45 gpm

(0, X, 0)

871.50

873.00

OF ETS

.00.578

05.718 817.50

-871.00

OF DEWICE

872.00



872.00



(see attached output for data used in model) Pumping with slurry wall Total Q=30 gpm

<u> N</u>



X span: 784.119 to 1588.089 Y span: 760 to 1345

Enivro-Chem Site

Pad Dewatering Simulation

Ten wells and no slurry wall



Appendix E Preliminary Hot Spot Report Preliminary Hot Spot Report Enviro-Chem Superfund Site Zionsville, Indiana

**April 8, 1998** 



# **Table of Contents**

| Introduction   |                                 |
|----------------|---------------------------------|
| Background     |                                 |
| Field Investig | ation1                          |
| Localized Geo  | ology2                          |
| Localized Hyd  | drogeology3                     |
| Concentrated   | Organics Distribution           |
| Remedial Pro   | gram4                           |
| Figures        |                                 |
| Figure 1       | Hot Spot Site Map               |
| Figure 2       | Hot Spot Geologic Cross Section |
| Appendix       |                                 |
| Appendix A     | Drilling Logs                   |

#### Introduction

This report presents the preliminary results of the hot spot treatment investigation at the Enviro-Chem Site located in Zionsville, Indiana. As part of this treatment investigation, five soil borings were advanced in the southwest corner of the Southern Concrete Pad Area; wells were installed in two of the borings; groundwater samples were collected for CLP analyses (full priority pollutant list) from the two wells; and a sample was collected for a pilot study for the recommended remediation (Fenton reagent/in-situ oxidation), see Versar's Hot Spot Work Plan dated 9 March.

This report focuses on only the geology of the hot spot area and the extent of the concentrated organics in relation to the geology. The information is presented graphically on Figures 1 and 2. A final report will be submitted once the results of the pilot test and the ground water sample analyses are received.

### **Background**

During the advancement of the Southern Concrete Pad Geotechnical Survey's borings (G-1 through G-18) at the Enviro-Chem site, unexpected concentrated organics were encountered below six feet in soil borings G-17 and G-18. Based on these borings, the extent of the concentrated organics appeared to be limited and subsurface characteristics suggested that a Fenton reagent would be an appropriate method of treatment for the hot spots. Versar developed a work plan (dated March 1998) to address the hot spots.

### **Field Investigation**

An initial soil exploration boring, designated as TB-1 (Test Boring -1), was advanced at the location shown on Figure 1. Originally, this boring was to be advanced in an uncontaminated area north of G-18, however, due to significant water and ice on the concrete pad at the time of drilling, the location was changed to a dry and uncontaminated area east of G-18 as shown on Figure 1. The purpose of this boring was to characterize the underlying stratigraphy proximate to the "hot spot."

In addition, based on the anticipated extent of concentrated organics in the hot spots (determined during the Southern Concrete Pad Geotechnical Survey), four boreholes were advanced in the area of the hot spot and were designated as IW-1 through IW-4 (Injection Well) at the locations shown on Figure 1. The purpose of these boreholes was to intercept the zone of concentrated organics (based on PID measurements and visual observations) and to install well screens in the appropriate interval to allow withdrawal of groundwater and subsequent injection of chemical oxidants for treatment purposes. Water bearing sand units with associated concentrated organics were encountered in boreholes IW-1 and IW-4 only. No significant water or concentrated organics were encountered in boreholes IW-2 and IW-3, and as a result, these two boreholes were grouted to the

surface in accordance to Indiana Department of Environmental Management (IDEM) guidelines. Four-inch diameter wells were installed in boreholes IW-1 and IW-4.

Prior to advancing the five boreholes, a 12-inch diameter casing was installed to a depth of six feet below the ground surface to prevent potential cross-contamination from the upper five feet of contaminated soils (identified by previous evaluations). Hollow stem auger drilling methodologies were utilized coupled with continuous split spoon sampling in each of drilling locations. All split-spoon samples were logged geologically and field screened for volatile organic vapors using an HNu Photo-Ionization Detector calibrated to an isobutylene standard. Four-inch diameter PVC casing and well screen (0.020 slot size) with a bottom cap were installed in boreholes IW-1 and IW-4. A sand pack was added to approximately one foot above the screened interval. A two-foot bentonite seal was placed on top of the sand pack, and the remaining annular space was grouted with a cement and bentonite slurry. The wells were completed with concrete base, protective casing, and locking caps. Drill cuttings were containerized in 55-gallon drums and stored on-site for subsequent incorporation into the SVE treatment area.

The two newly installed monitoring wells were developed utilizing air sparging equipment (30 to 40 pounds per square inch of pressure) and hand bailing. Well IW-1 was bailed dry and did not have any significant recovery over a period of five hours. However, after three days, the water level was approximately 10 feet below the ground surface. Well IW-4 was bailed dry (after approximately three well volumes had been removed). After two hours, the water level appeared to stabilize at 18.5 feet below the ground surface. Purge water was containerized in 55-gallon drums and stored on-site for subsequent treatment in the on-site WWT system prior to discharge.

During the boring program, attention was focused on the moisture content in each of the samples, the specific soil classification of the sample, the static water level in the borehole, any changes in water level, and evidence of concentrated organics. Drilling logs are presented in Appendix A (graphic logs and well construction details will be completed and provided in the final report).

### **Localized Geology**

The stratigraphy underlying the hot spot is that of glacial deposition based on the erratic distribution of sediments, poorly sorted sands and gravels, and the intermixing of angular and well rounded surfaces on the gravel surfaces. A geologic cross section (Figure 2) has been prepared based on the geotechnical evaluation and hot spot evaluation soil borings. Four distinct lithological material types were encountered in the hot spot area as follows:

#### 1) Disturbed Grey and Brown Clay/Silt

The upper 5 to 12 feet consisted of grey and brown clay, silt, fine to coarse sand, and gravel. The material ranged from moist to wet and was heavily mottled in areas. The material had a chemical

odor in some areas. Several of the split-spoon samples had evidence of wooden plant debris, which appeared to be relatively recent in age (not of glacial age), suggesting that this zone of material may not be naturally in-place (i.e. disturbed, excavated and re-compacted, etc.). This zone appeared to be excessively thick in the extreme southwestern corner of the concrete pad (borings IW-2 and G-17).

#### 2) Grey Clay and Silt

This material is interbedded with the brown sand and gravel material (discussed below). Generally, this material is dry to damp, rarely wet, and was never saturated when encountered, suggesting that it acts as a relatively impermeable layer. It was often encountered with trace amounts of well rounded to angular, fine to coarse sand and gravel indicative of glacial deposition.

#### 3) Brown Sand and Gravel

This material was interbedded with the grey clay and silt material (discussed above). This material consisted of a brown fine to medium, well rounded to angular sand and gravel. Generally the lenses that were encountered were not continuous and pinched in and out. The lenses were all saturated and appeared to be the migration pathways for the concentrated organics. It should be noted that in many of the borings the sand and gravel layers contained concentrated organics and the grey clay layers above and below the sand and gravel were clean (based on PID readings).

#### 4) Brown Gravel

This material was encountered only in boring IW-3. Based on the borings conducted during the Southern Concrete Pad Geotechnical Survey, this gravel layer was typically encountered at a depth of 15 to 23 feet below the ground surface. It is apparent that this layer is not continuous under portions of the hot spot area since it was not encountered in boring TB-1 (total depth 40 feet). Generally, this gravel layer consists of brown fine to coarse, poorly sorted, well rounded to angular gravel which is saturated. Some fine to coarse sand was also encountered in this material, but the majority of the material was gravel. It is presumed that this is similar to the material that has been referred to as the "lower" or "deep" sand unit in previous reports.

### Localized Hydrogeology

It was evident during the hot spot boring program that only the sand and gravel layers were saturated. The clay zones were dry to damp, suggesting that the sand and gravel layers appear as the only water bearing zones, while the clay zones act as confining layers. The most significant hot spots (based on PID measurements) were identified in the saturated sand and gravel zones.

The two wells that were installed (IW-1 and IW-4) were developed utilizing air sparging equipment (30 to 40 pounds per square inch of pressure) and hand bailing. The wells were left to stabilize for three days after the development process. The water in IW-1 stabilized at 10.0 feet below the ground surface, and IW-4 stabilized at 18.5 feet below the ground surface (see Figure 2). It is apparent that the sand layers drained into IW-1 because the top of the saturated sand lens encountered (screened) in IW-1 was approximately 10 feet below the ground surface. The screened sand layer in IW-4 was first encountered at approximately 18 feet below the ground surface, suggesting that the water level in this well is also a result of drainage from the intercepted saturated sand lens (see Figure 2).

Additional water levels will be recorded to further evaluate hydrogeologic characteristics, however, based on the data available to date, no evidence of artesian conditions have been encountered in the hot spot area. It should also be noted that no water table conditions have been identified to date; only perched water bearing zones were encountered.

### **Concentrated Organics Distribution**

The majority of the concentrated organics material (based on PID measurements presented in Figure 2) in the hot spot area was encountered in the saturated, interbedded sand and gravel layers between 9 and 22 feet below the ground surface.<sup>1</sup> The source of these concentrated organics is not clear, however, the concentrated organics appears to be confined to the sand and gravel lenses. The sand and gravel units are not continuous, and as a result, the concentrated organics are not wide spread, but rather appear to be confined to the extent of the sand and gravel units. Figure 1 presents the interpreted lateral extent of the hot spots. It should be noted that the southern edge of the hot spots has not been clearly defined.

Based on visual observations and odors, two distinct and likely disconnected hot spots were identified:

- an upper hot spot located in a possibly interconnected sand and gravel zone between
   9 and 16 feet below the ground surface, which had a strong chlorinated solvent odor;
   and
- a lower hot spot located between 17 and 21 feet below the ground surface, which had a very different odor (semi-volatile type compound) and appearance (brown oily compound).

<sup>&</sup>lt;sup>1</sup> Concentrated organics were identified in the geotechnical boring G-18 below this depth, however, it is believed that this material may have been dragged down as a result of the drilling methodology that was utilized. The concentrated organics may still exist at the depth identified in G-18 (see Figure 2), and as a result, the well screen in IW-4 was extended to intercept this depth.

The grey clay layers which separate these hot spots appear to be clean (based on PID measurements), suggesting that the concentrated organics have been confined to the sand and gravel layers.

not exactly tive

### **Remedial Program**

Injection wells (IW-1 and IW-4) have been installed with screen depths that intercept the hot spot zones. IW-1 has been constructed to treat the upper hot spot (chlorinated solvents), and IW-4 has been constructed to treat the lower hot spot (semi-volatile type compound). Based on development information, the injection wells are well connected to the formation allowing appropriate withdrawal of concentrated organics and subsequent injection of the Fenton reagent. The original calculation identifying the amount of concentrated organics requiring treatment has been significantly reduced based on the extent of the hot spots identified.

**FIGURES** 



APPENDIX A DRILLING LOGS

| PROJECT ENVIRO-CHEM          |          | OWNER                 | ********             | SKETCH MAP                     |  |  |
|------------------------------|----------|-----------------------|----------------------|--------------------------------|--|--|
| LOCATION ZIONSVILLE, IN      |          | W.O. NUMBER           | 3 2495-1010          | ND - NOT DETECTED              |  |  |
| BORING NUMBER TB-1 TOTAL DEP |          | TH 40' DIAMETER 6"    |                      | VPPM - VAPOR PARTS PER MILLION |  |  |
| SURFACE ELEV WAT LEV: I      |          | VIT                   | 24-HRS               | SS - SPLIT SPOON               |  |  |
| SCREEN: DIA                  | LENGTH - | SLOT SIZE             |                      | F - FINE M - MEDIUM            |  |  |
| CASING: DIA LENGTH           |          | TYPE                  |                      |                                |  |  |
| DRILLING COMPANY TOP FLIGHT  |          | DRITILLING METHOD HSA |                      | C - COARSE                     |  |  |
| DRILLER NICK LOG BY VE       |          | 8                     | DATE DRILLED 3-12-98 | NOTES                          |  |  |

| Depth<br>(feet) | Graphic<br>Log | Well<br>Construction | Sample<br>Number | Blow<br>Count/<br>RQD/<br>% REC. | PID<br>READINGS<br>(VPPM) | DESCRIPTION / SOIL CLASSIFICATION(<br>(COLOR, TEXTURE, STRUCTURES,<br>MOISTURE, OVA READINGS) |
|-----------------|----------------|----------------------|------------------|----------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|
| 1               |                |                      |                  |                                  |                           | 0-8.0 GREY AND BROWN CLAY, LITTLE TO TRACE                                                    |
| 2               |                |                      |                  |                                  |                           | SILT, TRACE FINE TO COARSE SAND, WET,                                                         |
| 3               |                |                      |                  |                                  | 50                        | DISTURBED, STRONG PESTICIDE ODOR                                                              |
| 4               |                |                      |                  |                                  |                           | 8.0-10.0 GREY CLAY, TRACE SILT,                                                               |
| 5               |                |                      |                  |                                  |                           | TRACE F-C SAND, DAMP,                                                                         |
| _ 6             |                |                      | SS-1             | 7-5                              | 6.2                       | NO ODOR                                                                                       |
| 7               |                |                      |                  | 13-17                            |                           |                                                                                               |
| . 8             |                |                      | SS-2             | 5-11                             | 2.3                       |                                                                                               |
| 9               |                |                      |                  | 15-14                            | <u> </u>                  | 10.0-10.2 BROWN COARSE SAND, POORLY                                                           |
| 10              |                |                      | SS-3             | 8-8                              | ND                        | SORTED, SATURATED, NO ODOR                                                                    |
| 11              | ]              |                      |                  | 10-12                            |                           | 10.2-22.5 GREY CLAY, SOME SILT, TRACE                                                         |
| 12              | j              |                      | SS-4             | 6-7                              | ND                        | F-C GRAVEL (WELL ROUNDED),                                                                    |
| 13              |                |                      |                  | 8-9                              |                           | DAMP, NO ODOR                                                                                 |
| 14              |                |                      | SS-5             | 4-4                              | ND                        |                                                                                               |
| 15              |                |                      |                  | 7-10                             |                           |                                                                                               |
| 16              |                |                      | SS6              | 5-8                              | ND                        |                                                                                               |
| 17              |                |                      |                  | 10-10                            |                           |                                                                                               |
| 18              |                |                      | SS-7             | 5-6                              | ND                        |                                                                                               |
| 19              |                |                      |                  | 6-10                             |                           |                                                                                               |
| 20              |                |                      | SS-8             | 5-5                              | ND                        |                                                                                               |
| 21              |                |                      |                  | 8-11                             |                           | 22.5-22.7 BROWN, WELL SORTED                                                                  |
| 22              |                |                      | SS-9             | 10-13                            |                           | F-M SAND SATURATED                                                                            |
| 23              | 7              |                      |                  | 16-23                            | 1.7                       |                                                                                               |

### **DRILL LOG -TB 1 (continued)**

| PROJECT ENVIRO-CHEM          |  | OWNER -               |                      | SKETCH MAP                     |  |  |
|------------------------------|--|-----------------------|----------------------|--------------------------------|--|--|
| LOCATION ZIONSVILLE, IN      |  | W.O. NUMBER 2495-1010 |                      | ND - NOT DETECTED              |  |  |
| BORING NUMBER TB-1 TOTAL DEP |  | TH 40' DIAMETER 6"    |                      | VPPM - VAPOR PARTS PER MILLION |  |  |
| SURFACE ELEV WAT LEV: I      |  | NIT 24-HRS            |                      | SS - SPLIT SPOON               |  |  |
| SCREEN: DIA LENGTH -         |  | SLOT SIZE             |                      | F - FINE M - MEDIUM            |  |  |
| CASING: DIA LENGTH           |  | TYPE                  |                      | C - COARSE                     |  |  |
| DRILLING COMPANY TOP FLIGHT  |  | DRITILLING METHOD HSA |                      |                                |  |  |
| DRILLER NICK LOG BY VFB      |  | -B                    | DATE DRILLED 3-12-98 | NOTES                          |  |  |

| Depth<br>(feet) | Graphic<br>Log | Well<br>Construction | Sample<br>Number | Blow<br>Count/<br>RQD/<br>% REC. | PID<br>READINGS<br>(VPPM) | DESCRIPTION / SOIL CLASSIFICATION(<br>(COLOR, TEXTURE, STRUCTURES,<br>MOISTURE, OVA READINGS) |
|-----------------|----------------|----------------------|------------------|----------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|
| 24              |                |                      | SS.10            | 7-14                             | ND                        | 22.7-32.5 GREY CLAY, SOME SILT,                                                               |
| 25              |                |                      |                  | 17-33                            |                           | LITTLE FINE GRAVEL (ANGULAR)                                                                  |
| 26              |                |                      | SS-11            | 18-31                            | ND                        | GRADATION INTO MORE SILT CONTENT                                                              |
| 27              |                |                      |                  | 38-50                            |                           | WITH DEPTH, DRY, NO ODOR                                                                      |
| 28              |                |                      | SS-12_           | 16-21                            | ND                        |                                                                                               |
| 29              | <u> </u>       |                      | <u> </u>         | 31-45                            |                           |                                                                                               |
| 30              | ]              |                      | SS-13_           | 22-38                            | ND                        |                                                                                               |
| 31              | ]              |                      |                  | 50                               |                           |                                                                                               |
| 32              | 1              |                      | SS-14            | 42-50                            | ND                        | 32.5-32.7 BROWN, WELL SORTED                                                                  |
| 33              |                |                      |                  |                                  |                           | MEDIUM SAND, SATURATED,                                                                       |
| 34              |                |                      | SS-15            | 50 (5")                          | ND                        | NO ODOR                                                                                       |
| 35              |                |                      |                  |                                  |                           |                                                                                               |
| 36              |                |                      | SS-16            | 37-50                            | ND                        | 32.7-40.0 GREY CLAY, TRACE SILT                                                               |
| 37              | ]              |                      |                  | (5")                             |                           | TRACE F-C                                                                                     |
| 38              | ]              |                      | SS-17            | 42-50                            | ND                        | ANGULAR/WELL ROUNDED                                                                          |
| 39              |                |                      |                  | (6")                             |                           | GRAVEL, DAMP, NO ODOR                                                                         |
| 40              | _              |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 | _              |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |

| PROJECT ENVIRO-CHEM           |                         | OWNER                  |                      | SKETCH MAP                            |
|-------------------------------|-------------------------|------------------------|----------------------|---------------------------------------|
| LOCATION ZIONSVILLE, IN       |                         | W.O. NUMBER 2495-1010  |                      | ND - NOT DETECTED                     |
| BORING NUMBER IW-1 TOTAL DEPT |                         | TH 22.0' DIAMETER 8.0' |                      | VPPM - VAPOR PARTS PER MILLION        |
| SURFACE ELEV WAT LEV: II      |                         | NIT                    | 24-HRS               | SS - SPLIT SPOON  F - FINE M - MEDIUM |
| SCREEN: DIA 4"                | SCREEN: DIA 4" LENGTH 5 |                        | SLOT SIZE .020       | C - COARSE                            |
| CASING: DIA 4"                | CASING: DIA 4" LENGTH   |                        | TYPE PVC             |                                       |
| DRILLING COMPANY TOP          | LIGHT                   | DRITILLING METHOD HSA  |                      |                                       |
| DRILLER NICK LOG BY VE        |                         | FB                     | DATE DRILLED 3-12-98 | NOTES                                 |

| Depth<br>(feet) | Graphic<br>Log | Well<br>Construction | Sample<br>Number | Blow<br>Count/<br>RQD/<br>% REC. | PID<br>READINGS<br>(VPPM) | DESCRIPTION / SOIL CLASSIFICATION(<br>(COLOR, TEXTURE, STRUCTURES,<br>MOISTURE, OVA READINGS) |
|-----------------|----------------|----------------------|------------------|----------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|
| 1               |                |                      |                  |                                  |                           | 0.610 GREY AND BROWN CLAY,                                                                    |
| 2               |                |                      |                  |                                  |                           | LITTLE SILT, TRACE FINE                                                                       |
| 3               |                |                      |                  |                                  | 80                        | TO COARSE SAND, WET,                                                                          |
| 4               |                |                      |                  |                                  |                           | DISTURBED, ODOR PRESENT                                                                       |
| 5               |                |                      |                  |                                  |                           |                                                                                               |
| 6               |                |                      | SS-18            | 8-15                             | 54                        | 6.0-9.8 GREY CLAY, SOME SILT, TRACE                                                           |
| 7               |                | ļ                    |                  | 17-32                            |                           | F-M SAND, TRACE F-M                                                                           |
| 8               |                |                      | SS-19            | 9-10                             | 12.5                      | GRAVEL (WELL ROUNDED), DAMP,                                                                  |
| 9               |                | ļ                    |                  | 13-22                            |                           | MOTTLED, SLIGHT ODOR                                                                          |
| 10              | <u> </u>       |                      | SS-20            | 5-5                              | 20.4                      | 9.8-10.0 BROWN F-M GRAVEL, SATURATED,                                                         |
| 11              |                |                      |                  | 7-12                             |                           | SLIGHT ODOR (CHLORINATED SOLVENT)                                                             |
| 12              |                |                      | SS-21            | 3-5                              | 3.0                       | 10.0-12.0 GREY CLAY, SOME SILT,                                                               |
| 13              |                |                      |                  | 12-23                            |                           | MOIST, NO ODOR                                                                                |
| 14              |                |                      | SS-22            | 6-8                              | 114.7                     | 12.0-12.2 BROWN FINE TO MEDIUM                                                                |
| 15              |                |                      |                  | 11-12                            | ND                        | SAND AND GRAVEL, SATURATED,                                                                   |
| 16              |                |                      | SS-23            | 3-4                              | ND                        | ODOR (CHLORINATED SOLVENT)                                                                    |
| 17              |                |                      |                  | 7-10                             |                           | 12.2-14.0 GREY CLAY, LITTLE SILT,                                                             |
| 18              | _              |                      | SS-24            | 4-5                              | ND                        | DAMP, NO COOR                                                                                 |
| 19              |                |                      |                  | 7-9                              |                           | 14.0-14.8 BROWN COARSE SAND, STRONG ODOR                                                      |
| 20              |                |                      | SS-25            | 4-6                              | NO                        | ( CHLORINATED SOLVENT)                                                                        |
| 21              | _              |                      |                  | 9-9                              |                           | 14.8-19.5 GREY CLAY, LITTLE SILT,                                                             |
| 22              |                |                      |                  |                                  |                           | DAMP. NO ODOR                                                                                 |
|                 |                |                      |                  |                                  |                           | 19.5-19.6 BROWN FINE SAND, SATURATED, NO ODOR                                                 |
|                 | <u> </u>       |                      |                  |                                  |                           | 19.6-22.0 GREY CLAY, TRACE SILT, DAMP, NO ODOR                                                |

| PROJECT ENVIRO-CHEM          |   | OWNER                 |                      | SKETCH MAP                     |  |  |
|------------------------------|---|-----------------------|----------------------|--------------------------------|--|--|
| LOCATION ZIONSVILLE, IN      | I | W.O. NUMBER 2495-1010 |                      | ND - NOT DETECTED              |  |  |
| BORING NUMBER IW-2 TOTAL DEP |   | TH 20.5 DIAMETER 8.0" |                      | VPPM - VAPOR PARTS PER MILLION |  |  |
| SURFACE ELEV WAT LEV: I      |   | NIT 24-HRS            |                      | SS - SPLIT SPOON               |  |  |
| SCREEN: DIA LENGTH -         |   | SLOT SIZE             |                      | F - FINE M - MEDIUM            |  |  |
| CASING: DIA LENGTH           |   | TYPE                  |                      | C - COARSE                     |  |  |
| DRILLING COMPANY TOP FLIGHT  |   | DRITILLING METHOD HSA |                      |                                |  |  |
| DRILLER NICK LOG BY VF       |   | В                     | DATE DRILLED 3-13-98 | NOTES                          |  |  |

| Depth<br>(feet) | Graphic<br>Log | Well<br>Construction | Sample<br>Number | Blow<br>Count/<br>RQD/<br>% REC. | PID<br>READINGS<br>(VPPM) | DESCRIPTION / SOIL CLASSIFICATION(<br>(COLOR, TEXTURE, STRUCTURES,<br>MOISTURE, OVA READINGS) |
|-----------------|----------------|----------------------|------------------|----------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|
| 1               |                |                      |                  |                                  |                           | 0 - 12.0 ' GREY AND BROWN CLAY                                                                |
| 2               |                |                      |                  |                                  |                           | LITTLE TO TRACE SILT, TRACE                                                                   |
| 3               |                |                      |                  |                                  | 10                        | FINE TO COARSE SAND, WET,                                                                     |
| 4               |                |                      |                  |                                  |                           | DISTURBED, SLIGHT ODOR,                                                                       |
| 5               |                |                      |                  |                                  |                           | PLANT DEBRIS, ( WOODY)                                                                        |
| 6               |                |                      |                  |                                  |                           |                                                                                               |
| 7               |                |                      | SS-26            | 3-3                              | ND                        |                                                                                               |
| 8               |                |                      |                  | 3-4                              |                           |                                                                                               |
| 9               |                |                      | SS-27            | 3-3                              | ND                        |                                                                                               |
| 10              |                |                      |                  | 3-4                              |                           |                                                                                               |
| 11              |                |                      | SS-28            | 6-7                              | ND                        |                                                                                               |
| 12              |                |                      |                  | 9-11                             |                           | 12.0 - 19.8 GREY CLAY, SOME SILT.                                                             |
| 13              | ]              |                      | SS-29_           | 5-9                              | ND                        | TRACE FINE SAND, TRACE FINE                                                                   |
| 14              |                |                      |                  | 13-15                            |                           | GRAVEL, DAMP, NO ODOR                                                                         |
| 15              |                |                      | SS-30            | 5-6                              | ND                        |                                                                                               |
| 16              | ]              |                      |                  | 8-11                             | <u> </u>                  | 19.8 20.5 BROWN MEDIUM TO COARSE                                                              |
| 17              | <u> </u>       |                      | SS-31            | 7-10                             | ND                        | SAND, SATURATED, NO ODOR                                                                      |
| 18              |                |                      |                  | 10-11                            |                           |                                                                                               |
| 19              |                |                      | SS-32            | 4-6                              | ND                        |                                                                                               |
| 20              |                |                      |                  | 6-11                             |                           |                                                                                               |
| 21              |                |                      |                  |                                  |                           |                                                                                               |
| 22              |                |                      |                  |                                  |                           |                                                                                               |
| 23              |                |                      |                  |                                  |                           |                                                                                               |

| PROJECT ENVIRO-CHEM         |                   | OWNER                 |                      | SKETCH MAP                     |
|-----------------------------|-------------------|-----------------------|----------------------|--------------------------------|
| LOCATION ZIONSVILLE, IN W.C |                   | W.O. NUMBER 2495-1010 |                      | ND - NOT DETECTED              |
| BORING NUMBER IW-3          | TOTAL DEPTH 26.0" |                       | DIAMETER 8"          | VPPM - VAPOR PARTS PER MILLION |
| SURFACE ELEV                | WAT LEV: INIT     |                       | 24-HRS               | SS - SPLIT SPOON               |
| SCREEN: DIA                 | LENGTH            |                       | SLOT SIZE            | F - FINE M - MEDIUM            |
| CASING: DIA                 | LENGTH            |                       | TYPE                 | C · COARSE                     |
| DRILLING COMPANY TOP FLIGHT |                   | DRITILLING METHOD HSA |                      |                                |
| DRILLER NICK                | LOG BY VFB        |                       | DATE DRILLED 3/16/98 | NOTES                          |

| Depth<br>(feet) | Graphic<br>Log | Well<br>Construction | Sample<br>Number | Blow<br>Count/<br>RQD/<br>% REC. | PID<br>READINGS<br>(VPPM) | DESCRIPTION / SOIL CLASSIFICATION( (COLOR, TEXTURE, STRUCTURES, MOISTURE, OVA READINGS) |
|-----------------|----------------|----------------------|------------------|----------------------------------|---------------------------|-----------------------------------------------------------------------------------------|
| 1               |                |                      |                  |                                  |                           | 0 - 6.0 GREY AND BROWN CLAY,                                                            |
| 2               |                |                      |                  |                                  |                           | LITTLE TO TRACE SILT, TRACE                                                             |
| 3               |                |                      |                  |                                  | 50                        | FINE TO COARSE SAND, WET,                                                               |
| 4               |                |                      |                  |                                  |                           | DISTURBED, SLIGHT ODOR                                                                  |
| 5<br>6          |                |                      |                  |                                  |                           | 6.0 - 10.0 BROWN SILT, TRACE F-M                                                        |
| 7               |                |                      | SS-33            | 9-10                             | 18.4                      | SAND, TRACE FINE GRAVEL,                                                                |
| 8               | ]              |                      |                  | 16-19                            |                           | MOTTLED, DAMP, SLIGHT ODOR                                                              |
| 9               |                |                      | SS-34            | 7-10                             | 0.8                       | GRADATION INTO GREY CLAY                                                                |
| 10              |                |                      |                  | 10-12                            | 9.0                       | AND FINE SAND, MOIST                                                                    |
| 11              | ]              |                      | SS-35            | 6-7                              | 0.8                       | 10.0 - 10.2 BROWN M-C SAND, SATURATED,                                                  |
| 12              |                |                      |                  | 11-12                            |                           | NO ODOR                                                                                 |
| 13              |                |                      | SS-36            | 7-9                              |                           | 10.2 - 21.0 GREY CLAY AND SILT,                                                         |
| 14              | _              |                      |                  | 10-13                            |                           | TRACE F-M SAND, TRACE                                                                   |
| 15              |                |                      | SS-37            | 6-7                              | 1.7                       | FINE GRAVEL, (WELL ROUNDED TO                                                           |
| 16              |                |                      |                  | 9-10                             |                           | ANGULAR), DAMP, NO ODOR                                                                 |
| 17              |                |                      | SS-38            | 4-4                              | 0.8                       |                                                                                         |
| 18              |                |                      |                  | 6-8                              | <u> </u>                  | 21.0 - 26.0 BROWN F-C POORLY                                                            |
| 19              |                |                      | SS-39            | 4-5                              | 0.8                       | SORTED, WELL ROUNDED TO                                                                 |
| 20              |                |                      |                  | 7-8                              |                           | ANGULAR GRAVEL, SATURATED                                                               |
| 21              | _              |                      | SS-40            | 4-4                              | 0.8                       | NO ODOR.                                                                                |
| 22              | _              |                      |                  | 9-13                             |                           |                                                                                         |
| 23              |                |                      | SS-41            | 4-6                              | 1.7                       |                                                                                         |

### DRILL LOG - IW 3 (continued)

| PROJECT ENVIRO-CHEM         |           | OWNER                 |                      | ND - NOT DETECTED              |
|-----------------------------|-----------|-----------------------|----------------------|--------------------------------|
| LOCATION ZIONSVILLE, IN     |           | W.O. NUMBER 2495-1010 |                      | VPPM - VAPOR PARTS PER MILLION |
| BORING NUMBER IW-3          | TOTAL DEP | TH 26.0" DIAMETER 8"  |                      | SS - SPLIT SPOON               |
| SURFACE ELEV WAT LEV: IF    |           | NIT 24-HRS            |                      | F - FINE M - MEDIUM            |
| SCREEN: DIA LENGTH          |           | SLOT SIZE             |                      | C - COARSE                     |
| CASING: DIA LENGTH          |           | TYPE                  |                      |                                |
| DRILLING COMPANY TOP FLIGHT |           | DRITILLING METHOD HSA |                      |                                |
| DRILLER NICK LOG BY VF      |           | <b>-</b> B            | DATE DRILLED 3/16/98 | NOTES                          |

| Depth<br>(feet) | Graphic<br>Log | Well<br>Construction | Sample<br>Number | Blow<br>Count/<br>RQD/<br>% REC. | PID<br>READINGS<br>(VPPM) | DESCRIPTION / SOIL CLASSIFICATION(<br>(COLOR, TEXTURE, STRUCTURES,<br>MOISTURE, OVA READINGS) |
|-----------------|----------------|----------------------|------------------|----------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|
| 24              |                |                      |                  | 6-7                              |                           |                                                                                               |
| 25              |                |                      | SS-42            | 5-7                              | 1.7                       |                                                                                               |
| 26              |                |                      |                  | 8-8                              |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      | ļ                |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 | ]              |                      |                  |                                  | 1                         |                                                                                               |
|                 | ]              |                      |                  |                                  |                           |                                                                                               |
| <b> </b>        | 1              |                      |                  |                                  |                           |                                                                                               |
|                 | 1              |                      |                  | ļ                                |                           |                                                                                               |
| ļ               | 1              |                      |                  |                                  |                           |                                                                                               |
|                 | _              |                      | ļ                | ļ                                |                           |                                                                                               |
|                 | 1              |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |

| PROJECT ENVIRO-CHEM                    | OWNER              | ***********          | SKETCH MAP                     |
|----------------------------------------|--------------------|----------------------|--------------------------------|
| LOCATION ZIONSVILLE, IN                | W.O. NUMBE         | R 2495-1010          | ND - NOT DETECTED              |
| BORING NUMBER IW -4                    | TOTAL DEPTH 28.00" | DIAMETER 8"          | VPPM - VAPOR PARTS PER MILLION |
| SURFACE ELEV                           | WAT LEV: INIT      | 24-HRS               | SS - SPLIT SPOON               |
| SCREEN: DIA 4"                         | LENGTH 10'         | SLOT SIZE .020       | F - FINE M - MEDIUM            |
| CASING: DIA 4"                         | LENGTH 17'         | TYPE PVC             | C - COARSE                     |
| DRILLING COMPANY TOP FLIGHT DRITILLING |                    | METHOD HSA           | C-COARSE                       |
| DRILLER NICK                           | LOG BY VFB         | DATE DRILLED 3/16/98 | NOTES                          |

| Depth<br>(feet) | Graphic<br>Log | Well<br>Construction | Sample<br>Number | Blow<br>Count/<br>RQD/<br>% REC. | PID<br>READINGS<br>(VPPM) | DESCRIPTION / SOIL CLASSIFICATION( (COLOR, TEXTURE, STRUCTURES, MOISTURE, OVA READINGS) |
|-----------------|----------------|----------------------|------------------|----------------------------------|---------------------------|-----------------------------------------------------------------------------------------|
| 1               |                |                      |                  |                                  |                           | 0 - 7.0 GREY BROWN CLAY, LITTLE                                                         |
| 2               |                |                      |                  |                                  |                           | TO TRACE SILT, TRACE FINE                                                               |
| 3               |                |                      |                  |                                  | 110                       | TO COARSE SAND. WET,                                                                    |
| 4               |                |                      |                  |                                  |                           | DISTURBED, ODOR PRESENT                                                                 |
| 5<br>6          |                |                      | SS-43            | 8-11                             | 6                         | 7.0 - 10.0 GREY CLAY, SOME SILT,                                                        |
| 7               |                |                      |                  | 12-12                            |                           | TRACE FINE SAND, TRACE                                                                  |
| 8               | ]              |                      | SS-44            | 10-11                            |                           | M-C GRAVEL, DAMP, NO ODOR                                                               |
| 9               |                |                      |                  | 14-16                            |                           |                                                                                         |
| 10              |                |                      | SS-45            | 6-7                              | 41                        | 10.0 - 10.2 BROWN M-C SAND, SATURATED.,                                                 |
| 11              |                |                      |                  | 8-14                             |                           | NO ODOR                                                                                 |
| 12              |                |                      | SS-46            | 11-12                            | 11                        | 10.2 - 11.8 GREY CLAY, SCME SILT,                                                       |
| 13              |                |                      |                  | 12-15                            |                           | TRACE F-C SAND, DAMP, NO ODOR                                                           |
| 14              |                |                      | SS-47            | 6-8                              | 34                        | 11.8 - 12.4 BROWN MEDIUM SAND, SATURATED,                                               |
| 15              |                |                      |                  | 12-14                            |                           | NO ODOR                                                                                 |
| 16              |                |                      | SS-48            | 5-4                              | 15                        | 12.4 - 13.8 GREY CLAY, SOME SILT, TRACE FINE                                            |
| 17              |                |                      |                  | 12-12                            |                           | SAND, DAMP, NO ODOR                                                                     |
| 18              |                |                      | SS-49_           | 10-11                            | 15.7                      | 13.8-14.4 BROWN MEDIUM SAND, SATURATED,                                                 |
| 19              |                |                      |                  | 12-18                            |                           | SLIGHT ODOR                                                                             |
| 20              |                |                      | SS-50            | 9-10                             | 3.5                       | 14.4 - 15.2 GREY AND BROWN CLAY AND                                                     |
| 21              |                |                      |                  | 10-11                            |                           | SILT, TRACE F-C SAND/GRAVEL, DAMP                                                       |
| 22              |                |                      | SS-51            | 3-4                              | 13                        | 15.2-15.6 BROWN MEDIUM SAND, SATURATED.                                                 |
| 23              |                |                      |                  | 7-12                             |                           | NO ODOR                                                                                 |

# DRILL LOG - IW 4 (continued)

| PROJECT ENVIRO-CHEM     | OWNER                 |                | SKETCH MAP                     |
|-------------------------|-----------------------|----------------|--------------------------------|
| LOCATION ZIONSVILLE, IN | W.O. NUMB             | ER 2495-1010   | ND - NOT DETECTED              |
| BORING NUMBER IW -4     | TOTAL DEPTH 28.00"    | DIAMETER 8"    | VPPM - VAPOR PARTS PER MILLION |
| SURFACE ELEV            | WAT LEV: INIT         | 24-HRS         | SS - SPLIT SPOON               |
| SCREEN: DIA 4"          | LENGTH 10'            | SLOT SIZE .020 | F - FINE M - MEDIUM            |
| CASING: DIA 4"          | LENGTH 17'            | TYPE PVC       |                                |
| DRILLING COMPANY TOP F  | LIGHT DRITILLING      | METHOD HSA     | C - COARSE                     |
| DRILLER NICK            | ILLER NICK LOG BY VFB |                | NOTES                          |

| Depth<br>(feet) | Graphic<br>Log | Well<br>Construction | Sample<br>Number | Blow<br>Count/<br>RQD/<br>% REC. | PID<br>READINGS<br>(VPPM) | DESCRIPTION / SOIL CLASSIFICATION(<br>(COLOR, TEXTURE, STRUCTURES,<br>MOISTURE, OVA READINGS) |
|-----------------|----------------|----------------------|------------------|----------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|
| 24              |                |                      | SS-52            | 3-6                              | 3                         | 15.6 - 17.8 GREY CLAY AND SILT,                                                               |
| 25              |                |                      |                  | 10-10                            |                           | TRACE F-C SAND/GRAVEL, DAMP,                                                                  |
| 26              |                |                      | SS-53            | 6-13                             | 1                         | NO ODOR                                                                                       |
| 27              |                |                      |                  | 15-21                            |                           | 17.8 - 21.0 BROWN POORLY SORTED                                                               |
| 28              |                |                      |                  |                                  |                           | SAND, SATURATED, ODOR                                                                         |
|                 |                |                      |                  |                                  |                           | PRESENT                                                                                       |
|                 | ļ              |                      |                  |                                  |                           | 21.0 - 25.0 GREY CLAY, LITTLE SILT,                                                           |
|                 |                |                      |                  |                                  |                           | DAMP. SLIGHT ODOR                                                                             |
|                 |                |                      |                  |                                  |                           | 25.0 - 25.3 BROWN SAND, SATURATED.                                                            |
|                 | ]              |                      |                  |                                  |                           | NO ODOR                                                                                       |
|                 |                |                      |                  |                                  |                           | 25.3 - 27.0 GREY CLAY, LITTLE SILT,                                                           |
|                 | ]              |                      |                  |                                  |                           | NO ODOR, DAMP                                                                                 |
|                 |                |                      |                  |                                  |                           | 27.0 - 27.3 BROWN SAND, SATURATED,                                                            |
|                 |                |                      |                  |                                  |                           | NO ODOR                                                                                       |
|                 |                |                      |                  |                                  |                           | 27.3 - 28.0 GREY CLAY, LITTLE SILT,                                                           |
|                 |                |                      | _                |                                  |                           | DAMP, NO ODOR                                                                                 |
|                 | <u> </u>       |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           | ·                                                                                             |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 |                |                      |                  |                                  |                           |                                                                                               |
|                 | 1              |                      |                  |                                  |                           |                                                                                               |
|                 | 1              |                      |                  |                                  |                           |                                                                                               |